科学研究費助成事業(科学研究費補助金)研究成果報告書

平成24年 6月15日現在

機関番号:32678
研究種目:基盤研究(C)
研究期間:2009~2011
課題番号:21560035
研究課題名(和文)光電子分光法による高誘電率ゲート絶縁膜/歪 Ge および
Si チャネルの界面構造の決定
研究課題名(英文) Study of high- κ /strained-Ge channel and high- κ /strained-Si channel
using X-ray Photoelectron Spectroscopy
研究代表者
野平 博司 (NOHIRA HIROSHI)
東京都市大学・工学部・教授
研究者番号:30241110

研究成果の概要(和文):角度分解 X 線光電子分光法を用いての熱処理と Si-cap の厚さの違い が HfO₂/Si-cap/歪み Ge/SiGe/Si 構造の組成と化学結合状態に及ぼす影響を調べた。その結果、 Ge 2p、Si 1s および Hf 3d 光電子スペクトルの解析から、本実験の条件では、Si-cap 層が 3~5 nm および Si-cap 層が 2nm でかつ熱処理前のとき、下層の歪み Ge 層の酸化を抑えられること、言 い換えると歪み Ge 層の酸化の抑制には、未酸化の Si が Ge 上に存在することが必要であるこ とを明らかにした。

研究成果の概要(英文): We have investigated the influence of Si-cap layer and the post deposition annealing (PDA) on compositional depth profiles and chemical structures of HfO₂/Si-cap/strained Ge/SiGe/Si interfaces by angle-resolved X-ray photoelectron spectroscopy. Analyses of Ge 2p, Si 1s and Hf 3d spectra show that strained-Ge layer is oxidized during the deposition of HfO₂ in the case of an 1-nm-thick Si cap layer, while the Ge layer is not oxidized in the case of an 3 and 5-nm-thick Si cap layer. In other words, the oxidation of Ge is prevented by the existence of bulk-Si.

交付決定額

			(金額単位:円)
	直接経費	間接経費	合 計
2009年度	2, 500, 000	750, 000	3, 250, 000
2010年度	600, 000	180, 000	780, 000
2011年度	500, 000	150, 000	650, 000
総計	3, 600, 000	1, 080, 000	4, 680, 000

研究分野: 薄膜・表面界面物性

科研費の分科・細目:応用物理学・工学礎基 薄膜・表面界面物性 キーワード: 歪チャネル、硬X線光電子分光法、高誘電率膜ゲート絶縁膜、 高移動度チャネル、Ge、界面構造

1. 研究開始当初の背景

超低消費電力化と超高速化を引き続き推進するためには、限界に達したシリコン酸化 膜/シリコン構造に変わり、図1のような物理 膜厚が厚くてもSiO₂換算で薄く、かつゲート リーク電流の低減が実現できる高誘電率絶 縁膜とシリコンよりも電子・正孔ともに高移 動度であるGeチャネル(Si基板上にエピタ キシャル成長させたGe層)を組み合わせた 金属-絶縁体-半導体電界効果トランジスタ (MISFET、右図参照)を開発することが国 家の命運を決するとも言える重要な研究課 題である。加えて Ge チャネルは、歪を加え ることでさらに移動度が向上する。したがっ て、この構造の MISFET 実現の成否は、高誘 電率膜とGe チャネルとの間にGe の歪を保っ たまま界面準位や固定電荷が少なくかつ熱 的に安定で経時変化の少ない界面を実現で きるか否かにかかっている。しかし、歪が存 在する界面の化学結合状態を原子スケール で詳細に調べた研究は、皆無であった。

2. 研究の目的

角度分解光電子分光法と放射光を用いた 軟X線および硬X線光電子分光法さらにエネ ルギー可変光電子分光法など種々の光電子 分光法と電気的評価方法を駆使して、高誘電 率ゲート絶縁膜/歪ゲルマニウム界面およ び歪シリコンの組成及び化学結合状態の深 さ方向分布を非破壊かつ原子スケールで明 らかにすることを目的とする。

3. 研究の方法

初年度(2009年度)に、歪 Ge および歪 Si 基板の作製方法を確立した。また、2009年度 の研究結果より、歪 Si よりも正孔移動度の大 きい歪 Ge を中心に研究を進めることとし、 高誘電率膜材料には誘電率が大きい HfO2 を 用いることとした。2009年度に確立した手法 を用いて作製した Si-Cap/歪 Ge/SiGe/ Si(100) 基板の上にHfO2層を堆積した。堆積条件は、 容量-電圧(C-V)測定の結果に基づき最適 化した。HfO2の堆積温度は室温である。なお、 その後一部試料は酸素雰囲気中で、300℃、 400℃の熱処理を行った。このようにして作 製した HfO2(10nm)/Si-Cap/歪 Ge(20nm)/SiGe /Si(100)構造を ESCA-300 (励起 X 線 Alka) による角度分解光電子分光測定および SPring-8の BL46XU[1,2]において硬X線励起 角度分解光電子分光法で評価した。測定光電 子は、Si 2p、Si 1s、Ge 2p、Hf 3d および O 1s 光電子で、それぞれ光電子の脱出角度 30°~ 80°で測定した。

4. 研究成果

図 2、3 にそれぞれ Ge 2p、Si 1s 光電子スペ クトルを示す。図 2 の破線は GeO₂/Ge 構造の ときの GeO₂ からの信号のピーク位置を示す [3]。図 2 より、Si-cap 層が 3~5 nm と Si-cap 層が 2 nm でかつ熱処理前のとき、酸化した Ge の信号が観測されないことから、Si-cap に

図 2 Ge 2p 光電子スペクトル

図 3 Si 1s 光電子スペクトル

よって歪み Ge 層の酸化が抑えられたことが わかる。一方、Si-cap 層なし、Si-cap 層が 1 nm および Si-cap 層が 2 nm でかつ熱処理後のとき、 酸化した Ge の信号が観測されたことから、歪 み Ge 層が酸化していることがわかる。このと き、未酸化の Si と酸化した Si からの Si 1s 光 電子スペクトルの強度比は、Si-cap 層が全て酸 化している場合とほぼ一致した。すなわち、 Si-cap 層が存在していれば、歪み Ge 層の酸化 が抑制できることを示している。Si と Ge の両 方が存在する場合、選択的に Si が酸化される こと[4]から、HfOゥ堆積時にまず Si-cap が選択 的に酸化されるため、Ge 層の上に未酸化の Si が存在している間は、歪み Ge 層が酸化されな いと考えられる。また、酸化した Ge からのピ ークの結合エネルギーが、熱処理によって低 結合エネルギー側にケミカルシフトしている ことがわかる。これは、熱処理によって Ge+GeO₂→2GeO↑の反応により GeO₂が Ge₂O₃ へ変化していること[5]、あるいは Hf ジャーマ ネイトの形成を示唆している。

図3よりSi-cap層が薄くなるにつれ、酸化 したSiのピークが低結合エネルギー側にシ フトしていることが分かる。これは、Si-cap 層が薄くなると、Hfシリケート中のHfの割 合が増えることを示唆している。実際、Si-cap 層が薄くなるとSi-O-SiからのO1s光電子強 度が減少しHf-O-SiからのO1s光電子強度が 増えることが観測されており、その結果と矛 盾しない。

表1に、Hf 3d の結合エネルギーとO1sの 3 つのピークの結合エネルギーの差を示す。 Si-cap 層の厚さが変わってもHf 3d とO1sの ピークとの結合エネルギー差に変化がほと んどないことから、Si-cap 層が薄くなるとス ペクトル全体が低結合エネルギー側にシフ トしている原因は、化学結合状態の変化では ないと推測される。

次に、光電子強度の脱出角度依存性から HfO₂/Si-cap/歪み Ge/SiGe 構造を推定する。こ こで、層状モデルに基づいた計算を適用する ためには、各層の厚さが一様とみなせる必要 がある。そこで、歪み Ge 層、Si-cap 層、HfO₂ 層それぞれを堆積した後の表面を AFM で測 定した。その結果、各段階での試料の表面ラ フネスは、最大で約 0.3nm であることから、 層状モデルでの計算結果は、1nm 程度のスケ

表 1 BE_{Hf 3d} と BE_{O 1s}の結合エネルギー差

Si-cap	SiO_2	Silicate	GeOx	HfO ₂
[nm]	[eV]	[eV]	[eV]	[eV]
0	-	-	1130.3	1131.5
1	1130.1	1130.4	1130.6	1131.6
2	1129.9	1130.3	-	1131.6
3	1130.1	1130.6	-	1131.6
5	1130.1	1130.5	-	1131.6

ールである本検討に大きな影響は与えない と考えられる。

図 4 (a)は Si-cap 層が 5nm の場合で、上か ら順に SiO₂からの Si 1s 光電子強度で規格化 した HfO₂からの Hf 3d 光電子強度、未酸化の Si からの Si 1s 光電子強度で規格化した SiO₂ の Si 1s 光電子強度、そして、未酸化の Ge か らの Ge 2p_{3/2}光電子強度で規格化した未酸化

の Si からの Si 1s 光電子強度の脱出角度依存 性を示したものである。実線は 10nm - HfO₂/ 2.6nm - SiO₂/3.7nm - Si / 20nm - Ge / Si_{0.5} Ge_{0.5} という層状モデルで計算した結果である。実 験結果と実線がほぼ一致していることから、 試料はモデルのような構造になっていると 推定できる。

図 4 (b)は、Si-cap 層が 2 nm のときの結果 を図 4(a)と同様に示したものである。実線は 9nm - HfO₂ / 5nm - SiO₂ / 0.5nm - Si / 20nm - Ge / Si_{0.5} Ge_{0.5} という層モデルで計算した結果で あり、破線は 8.3nm - HfO₂/6nm - SiO₂/0.2nm - Si / 20nm - Ge / Si_{0.5}Ge_{0.5}という層状モデル で計算した結果である。実験結果と実線がほ ぼ一致していることから、この層状モデルの ような構造になっていると推定できる。この 推定によると、熱処理後の Si-cap の未酸化の Siの厚さが平均では 0.2nm となる。 0.2nm と いう平均膜厚は Si-cap 層の表面ラフネスより 小さいことから、未酸化の Si 層は連続膜でな い可能性が高い。したがって、熱処理によっ て Ge が酸化したのは、Si-cap 層のうち薄い 部分がすべて酸化し、HfO2と Ge が直接接触 したためと考えられる。したがって、実際に 歪み Ge 層の酸化を抑えるには、熱処理前に 厚さ約 0.5nm の未酸化の Si が必要である。

図 4(c)は Si-cap 層が 1nm のときで、上から 順に SiO₂からの Si 1s 光電子強度で規格化し た HfO₂からの Hf 3d 光電子強度、GeOx のか らの Ge $2p_{3/2}$ 光電子強度で規格化した SiO₂の Si 1s 光電子強度、そして、未酸化の Ge から の Ge $2p_{3/2}$ 光電子強度で規格化した GeOx か らの Ge $2p_{3/2}$ 光電子強度の脱出角度依存性を 示したものである。実線は 8nm - HfO₂ / 2nm -SiO₂ / 1.6nm - GeO₂ / 20nm - Ge / Si_{0.5} Ge_{0.5} と いう層状モデルで計算した結果であり、破線 は 8nm - HfO₂ / 3.7nm - SiGeO₄ / 20nm - Ge / Si_{0.5} Ge_{0.5} という層状モデルで計算した結果で ある。実験結果と線がほぼ一致していること から、SiO₂層と GeOx 層は混ざっていること がわかった。

参考文献

- K. Kobayashia, M. Yabashi, Y. Takata, T. Tokushima, S. Shin, K. Tamasaku, D. Miwa, T. Ishikawa, H. Nohira and T. Hattori, Y. Sugita, O. Nakatsuka, A. Sakai, and S. Zaima, Appl. Phys. Lett. 83, 1005 (2003).
- [2] Y. Takata, K. Tamasaku, T. Tokushima, D. Miwa, S. Shin, T. Ishikawa, M. Yabashi, K. Kobayashi, J. J. Kim, T. Yao, T. Yamamoto, M. Arita, H. Namatame, M. Taniguchi, Appl. Phys. Lett. 84, 4310 (2004).
- [3] D.Schmeisser, R.D. Schnell, A. Bogen, F.J. Himpsel, D. Rieger, G. Landgern, J.F. Morar, Surf. Sci. 172, 455 (1986).

- [4] F. K. LeGoues, R. Rosenberg, T. Nguyen, F. Himpsel, and B. S. Meyerson, J. Appl. Phys. 65, 1724 (1989).
- [5] A. Dimoulas, D. Tsoutsou, S. F. Galata, Y. Panayiotatos, G. Mavrou, and E. Golias, ECS Transactions, **33** (6) 433 (2010).
- 5. 主な発表論文等

〔雑誌論文〕(計4件)

① <u>Hiroshi Nohira</u>, Arata Komatsu, Koji Yamashita, Kuniyuki Kakushima, Hiroshi Iwai, Yusuke Hoshi, <u>Kentarou Sawano</u>, and Yasuhiro Shiraki, (Invited) XPS Study on Chemical Bonding States of high-к/high-µ Gate Stacks for Advanced CMOS, Electrochemical Society Inc., ECS Transactions, 査読有, Vol. 41, 2011, pp. 137-146, DOI: なし

②<u>Hiroshi Nohira</u>, Study on Chemical Bonding States at high- κ /Si and high- κ /Ge Interfaces by XPS, Proceedings of 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology, 査読無, Part 2 of 3, 2010, pp.990-993.

③ Arata Komatsu, Kentarou Nasu, Yusuke Hoshi, Toru Kurebayashi, <u>Kentarou Sawano</u>, Maksym Myronov, <u>Hiroshi Nohira</u>, and Yasuhiro Shiraki, Study of HfO₂/Si/Strained-Ge/SiGe Using Angle Resolved X-ray Photoelectron Spectroscopy, Electrochemical Society Inc., ECS Transactions, 査読有, Vol. 33, No. 3, 2010, pp. 467-472.

④ <u>Hiroshi Nohira</u>, XPS Study on Chemical Bonding States of High-k Gate Stacks for Advanced CMOS, Electrochemical Society Inc., ECS Transactions, 查読有, Vol. 28, No. 2, 2010, pp. 129-137.

〔学会発表〕(計8件(招待講演3件))
① 小松新,多田隼人,渡邉将人,那須賢太郎,星祐介,榑林徹,<u>澤野憲太郎</u>,ミロノフマクシム,白木靖寛,<u>野平博司</u>,Si-capによる HfO₂/ 歪み Ge 界面の Hf ジャーマネイト形成の抑制,第59回応用物理学関係連合講演会,2012/3/15,早稲田大学(東京都)

野平 博司,小松 新,那須 賢太郎,星 裕介,榑林 徹, <u>澤野 憲太郎</u>,マクシム ミロノフ,白木 靖寛,角度分解硬 X 線光電子分光法による HfO₂/Si/歪み Ge/SiGe 構造の評価,電子情報通信学会技術研究会報告 シリコン材

料・デバイス (招待講演), 2011/10/21,東北大学 (宮城県)

③ 小松 新, 那須 賢太郎, 星 裕介, 榑林 徹, <u>澤野 憲太郎</u>, マクシム ミロノフ, <u>野平 博</u> 司, 白木 靖寛, 角度分解 X 線光電子分光法 による HfO₂/Si/歪み Ge/SiGe 構造の評価, 応 用物理学会 薄膜・表面物理分科会・シリコ ンテクノロジー分科会共催特別研究会 「ゲ ートスタック研究会 —材料・プロセス・評 価の物理—」(第16回研究会) (旧 「極薄 シリコン酸化膜の形成・評価・信頼性」研究 会), 2011 年1月 22 日, 東京工業大学(東京 都)

④ <u>Hiroshi Nohira</u>, Study on Chemical Bonding States at high-κ/Si and high-κ/Ge Interfaces by XPS, 2010 10th IEEE International Conference on Solid-State and Integrated Circuit (招待講演), 2010 年 11 月 3 日, 上海 (中国)

⑤ Arata Komatsu, Kentarou Nasu, Yusuke Hoshi, Toru Kurebayashi, <u>Kentarou Sawano</u>, Maksym Myronov, <u>Hiroshi Nohira</u>, and Yasuhiro Shiraki, Study of HfO₂/Si/Strained-Ge/SiGe Using Angle Resolved X-ray Photoelectron Spectroscopy, 218th Meeting of The Electrochemical Society, 2010年10月13日, Las Vegas, NV, USA

⑥ 小松 新, 那須賢太郎, 星 裕介, 榑林 徹, <u>澤野憲太郎</u>, ミロノフ マクシム, <u>野平博司</u>, 白木靖寛, 角度分解 X 線光電子分光法による HfO₂/Si/歪 Ge/SiGe 構造の評価 II, 2010 年秋 季第 71 回応用物理学会学術講演会,予稿集, 15p-ZA-12, 2010 年 9 月 15 日, 長崎大学(長 崎県)

⑦ <u>Hiroshi Nohira</u>, XPS Study on Chemical Bonding States of High-k Gate Stacks for Advanced CMOS, 217th Meeting of The Electrochemical Society (招待講演), 2010 年 4 月 27 日, Vancouver, Canada

⑧ 小松 新, 那須 賢太郎, 星 裕介, 榑林 徹,
澤野 憲太郎, マクシム ミロノフ, 野平 博
司, 白木 靖寛, 角度分解 X 線光電子分光法
による HfO₂/Si/歪 Ge/SiGe 構造の評価, 第 57
回応用物理学関係連合講演会, 2010 年 3 月 18
日, 東海大学・湘南キャンパス

6.研究組織
(1)研究代表者
野平 博司 (NOHIRA HIROSHI)
東京都市大学・工学部・教授
研究者番号: 30241110

(2)研究分担者 なし

(3)連携研究者

澤野 憲太郎 (SAWANO KENTAROU)東京都市大学・工学部・講師研究者番号:90409376