科学研究費助成事業(科学研究費補助金)研究成果報告書

平成24年5月30日現在

機関番号:55501 研究種目:基盤研究(C) 研究期間:2009~2011 課題番号:21560106
研究課題名(和文) 画像解析評価を用いた軽量高強度材料 Al3Ti の延性改善と塑性変形メカ ニズムの解明
研究課題名(英文) Improvement of ductility of Al3Ti based on the estimation of deformation by using image analysis method
研究代表者 吉田 政司(YOSHIDA MASASHI) 独立行政法人国立高等専門学校機構宇部工業高等専門学校・機械工学科・教授 研究者番号:10370024

研究成果の概要(和文):

正方晶 A1₃Ti、および立方晶(A1, Ni)₃Ti を放電プラズマ焼結法を用いて作製した。引張強度 は A1₃Ti は 250MPa、(A1, Ni)₃Ti は 350MPa であった。破断面観察から破断は粒界破壊であった。 (A1, Ni)₃Ti の粒界強度を改善するために TiB₂添加による効果を調べた。10%の TiB₂の添加によ り (A1, Ni)₃Ti の引張強度は 380MPa に改善された。また、TiB₂-30%(A1, Ni)₃Ti 複合材において 引張強度 700MPa、ビッカース硬度 HV=1600 の高強度、高硬度材料が得られることがわかった。

研究成果の概要(英文):

Titanium tri-aluminide (Al₃Ti) of tetoragonal DO_{22} type structure and (Al,Ni)₃Ti of cubic Ll₂ structure has been sintered using spark plasma sintering. The tensile strength of Al₃Ti was 250MPa and that of (Al,Ni)₃Ti was 350MPa. Brake down occured at grain boundaries. Addition of 10% TiB₂ was found to improve the tensile strength of (Al,Ni)₃Ti up to 380MPa. It has also been confirmed that TiB₂-30wt% (Al,Ni)₃Ti composite has Vickers hardness as high as Hv 1700 and tensile strength of 700MPa.

交付決定額

(金額単位:円)

	直接経費	間接経費	合 計
2009年度	1,400,000	420,000	1, 820, 000
2010年度	1, 100, 000	330,000	1, 430, 000
2011年度	800,000	240,000	1,040,000
総計	3, 300, 000	990, 000	4, 290, 000

研究分野:工学

科研費の分科・細目:機械工学、機械材料・材料力学

キーワード: 放電プラズマ焼結、チタン化合物、引張強度、ビッカース硬度

1. 研究開始当初の背景

正方晶 Al₃Ti および立方晶(Al, M)₃Ti では、 圧縮試験で 10%程度の塑性変形を示すことが 知られているが、引張試験ではほとんど塑性 変形は観測されていない。破断面観察による と、破壊が粒界で起きることが報告されてい る。

透過型電子顕微鏡(TEM)による観察によって、正方晶 Al₃Ti では(111)[112]双晶形成が 起きること、また立方晶構造(Al, M)₃Ti では <110>{111} すべり系が活動することなどが 確認されている。しかしながら、結晶そのも のの破断ひずみの大きさや結晶変形メカニ ズムの詳細は不明である。

 研究の目的 本研究では正方晶 Al₃Ti および立方晶
(Al, M)₃Ti の(1)延性改善と(2)塑性変形メカ ニズムの解明を行う。材料の延性を正しく評 価するためには単相試料を用いて引張試験 等を行って、延性を評価する必要がある。し かしながら Al₃Ti や (Al, M)₃Ti の合成時には 不純物相が生成しやすく、元素置換を行った り、組成比を変えると不純物相の生成割合も 変化する。そのため、AlaTi や (Al,M)aTi そ のものの延性を正しく評価することが困難 である。そこで、本研究では、Al₃Ti および (A1, M)₃Ti 多結晶体試料において、マクロな、 平均化された応力-ひずみ曲線の測定に加 えて、個々の結晶粒子の塑性変形の大きさを 画像解析法を用いて測定する。それによって、 作成条件を種々に変化させて作成した正方 晶 Al₃Ti および立方晶 (Al, M)₃Ti の延性を、 不純物相の種類と生成量に影響されずに、評 価することが可能となり、延性改善の指針が 得られる。また、Al₃Ti の破壊の形体が粒界 破壊であることが知られているので、粒界を 強化する目的で TiB,の添加効果を調べる。

3. 研究の方法

本研究の具体的な研究内容は以下のとおりである。

(1)A1:Ti 比を変化させた Al₃Ti 粉末を放電 プラズマ焼結 (SPS) 法によって焼結する。焼 結温度を変えることによって、結晶サイズを 数ミクロンから数十ミクロンまで変化させ る。その試料に引張試験を行って塑性変形を 与え、変形前後の個々の結晶粒子のひずみの 大きさを画像解析によって求める。マクロな 応力ひずみ測定も同時に行う。それらによっ て、正方晶 D0²型 Al₃Ti の延性評価を行う。

(2)A1:M:Ti 量を変化させた(A1, M)₃Ti 粉末 を SPS 法によって焼結する。遷移金属元素 M は Ni を調べる。焼結温度を変えることによ って、結晶サイズを数ミクロンから数十ミク ロンまで変化させる。その試料に引張試験を 行って塑性変形を与え、変形前後の個々の結 晶粒子のひずみの大きさを画像解析によっ て求める。マクロな応力ひずみ測定も同時に 行う。それらによって、立法晶 L1₂型 (A1, Ni)₃Ti の延性評価を行う。

(3) TiB₂ 添加による正方晶 D0₂₂型 Al₃Ti、および立方晶 L1₂型(Al, Ni)₃Ti の粒界強度の改善を試みる。試料作成方法および延性評価方法は(1)(2)と同様の方法により行う。

4. 研究成果

(1) Al₃Ti、(Al, Ni)₃Ti の合成と特性評価

Al₃Ti、および Al_{75-x}Ni_xTi₂₅ を 1273K で SPS 法で作製した。図1に作製した試料の X 線回 折パターンを示す。

図1 放電プラズマ焼結法で作製した Al₃Ti、 および Al_{75-x}Ni_xTi₂₅の X 線回折パターン

X線回折パターンから、Ni を添加しない Al₃Ti 試料では正方晶 D0₂₂型 Al₃Ti が、また Ni を添 加した試料では立方晶 L1₂型構造をもつ (Al, Ni)₃Ti が作製できていることがわかる。 ビッカース硬度測定を行った結果、正方晶 Al₃Ti のビッカース硬度は 600Hv、立方晶 (Al, Ni)₃Ti のビッカース硬度は、Ni のモル% が 5%から 12%の範囲で、Ni 量によらず、ほぼ 300Hv であった。

次いで、放電加工により引張試験片を作製 し、引張試験を行った。室温における正方晶 Al₃Ti の引張強度は 240MPa、Ni のモル%が 5% から 12%の範囲の立方晶(Al, Ni)₃Ti の引張強 度は 300~350MPa であった。Ti の割合を 22.5 モル%に減らした(Al, Ni)₃Ti で引張強度の最 大値 430MPa が得られた。なお、焼結温度を 1373Kに上げた場合には引張強度は 250MPaに 減少した。また 500℃における Al₃Ti の引張 強度は 100MPa であった。

図2に Al₃Ti の破断面の SEM 像を、図3に は(Al, Ni)₃Ti の破断面の SEM]像を示す。

図2 Al₃Tiの破断面の SEM 像

Al₃Ti は結晶粒子の大きさが3ミクロン程度 であり、(Al,Ni)₃Ti は結晶粒の大きさが20 ミクロン程度であることがわかる。また、両 者ともへきかい面が見られ、粒界で破壊して いることがわかる。なお、引張試験による結 晶粒のひずみの大きさを画像解析を用いて 評価したが、検出限界(0.1%)以下であった。

(2) TiB₂添加による正方晶 D0₂₂型 Al₃Ti、お よび立方晶 L1₂型(Al,Ni)₃Ti の粒界強度の改 善(Al,Ni)₃Ti に TiB₂を 10%添加して SPS 法を 用いて 1273K で焼結した場合、引張強度は 380MPa まで改善した。また、TiB₂ と Al₃Ti は 良好な濡れ性をもつことがわかった。そこで、 TiB₂の添加割合をさらに増加させて、 TiB₂-Al₃Ti 複合材の力学特性評価を行った。

115.2 ft.311 (g日4)シンテト(日前) (G1,Ni)37i 図 4 には TiB₂ に Al₃Ti、および(Al,Ni)3Ti を添加し、1273K で焼結した複合材のビッカ ース硬度を示す。Al₃Ti を添加しない TiB₂の ビッカース硬度はほとんどゼロである。この ことは、TiB₂は 1000℃ではほとんど焼結が進 まないことを示している。Al₃Ti の添加割合 が増加するにつれてビッカース硬度は上昇 し、添加量が 30%で、ビッカース硬度は最大 値 2200Hv をもつ。30%以上ではビッカース硬 度は減少する。(Al,Ni)3Ti を添加した場合に も、添加量が 30%でビッカース硬度は最大値

図 4 TiB₂に Al₃Ti または(Al, Ni)₃Ti を添加 して 1273K で焼結した試料のビッカース硬度

図5 TiB₂に Al₃Ti または(Al, Ni)₃Ti を添加 して 1273K で焼結した試料の曲げ強度

図 6 焼 結 温 度 1273K で 焼 結 し た TiB₂-30%Al₃Tiの SEM 像

図7 TiB₂に Al₃Ti または(Al, Ni)₃Ti を添加 して 1273K で焼結した試料の相対密度

1700Hv をもつ。これらのことから、 Al_3Ti お よび(Al, Ni) $_3Ti$ は良好な濡れ性をもち、 TiB_2 の焼結を促進することがわかった。

図5にはTiB₂にAl₃Tiまたは(Al,Ni)₃Tiを 添加し1273Kで焼結した試料の曲げ強度を示 す。曲げ強度は(Al,Ni)₃Tiを30%、および40% 加えたときに最大値700MPaをもつ。一方で Al₃Tiを添加した場合には200MPa前後の低い 値しか得られなかった。

図 6 には焼結温度 1273K で焼結した TiB₂-30%Al₃Tiの SEM 像を示す。緻密で、空隙 の少ない試料が得られていることがわかる。 図7にはTiB₂にAl₃Tiまたは(Al, Ni)₃Tiを 添加し1273Kで焼結した試料の相対密度を示 す。相対密度は(Al, Ni)₃Tiを添加した場合に Al₃Tiを添加した場合よりも大きくなってい る。図5で、TiB₂に(Al, Ni)₃Tiを添加した場 合に、Al₃Tiを添加した場合よりも大きな曲 げ強度が得られる理由は、前者で、相対密度 のより大きい試料が得られ、空隙が少ないた めであると考えられる。

5. 主な発表論文等 (研究代表者、研究分担者及び連携研究者に

は下線)

〔雑誌論文〕(計2件) ① <u>Masashi Yoshida</u>, "Effects of Al3Ti and (Al,Ni)3Ti Addition on the Sintering of TiB2", Advanced Structure Materials,査読 有り,vol.1373, 2012, Accepted ② <u>Masashi Yoshida</u>, "Effects of Al3Ti

② <u>Masashi Toshida</u>, Effects of A1311 Addition on the Sintering of TiB2", MRS Online Proceedings Library, 査読有 り,2011, mrsf10-1307-cc05-05

```
〔学会発表〕(計7件)
```

① <u>吉田政司</u>「放電プラズマ焼結法による TiB2-A13Ti複合材の作製と特性評価」、日本 金属学 2012 年春季大会、横浜国立大学、 2012.3.28

② <u>M. Yoshida</u> and T. Yumitate, "Mechanical Properties of TiB2-A13Ti Composites Fabricated by Spark Plasma Sintering", 2011 World Congress on Engineering and Technology, Guandong Hotel (Shanghai, China), 2011. 10. 31

③ <u>M. Yoshida</u>, "Effects of Al3Ti and (Al, Ni)3Ti Addition on the Sintering of TiB2", XX International Material Research Congress 2011, CasaMagna Mariott Cancun Resort(Cancun, Mexico), 2011.8.20

④ <u>M.Yoshida</u>, "Effects of Al3Ti Addition on the Sintering of TiB2", 2010 MRS Fall Meeting, Hynes Convention Center(Boston, USA), 2010.11.29

- (5) T.Yumitate, S.Ikenaga, <u>M.Yoshida</u>, "Effects of the Addition of Al₃Ti on the Sintering of refractory TiB₂", The International Scientific and Technical Confference; Up-to-dates Materials Science and Nanotechnologies, Komsomolsk State Technical University (Komsomolsk, Russia), 2010.9.21
- ⑥ <u>M. Yoshida</u>, "Application of DIGITAL IMAGE CORRELATION ANALYSIS to the study

of plastic deformation of BCC Iron POLYCRYSTALS", The International Scientific and Technical Confference; Up-to-dates Materials Science and Nanotechnologies, Komsomolsk State Technical University (Komsomolsk, Russia), 2010.9.21 ⑦ 吉田政司、秋山雅義、「純鉄の塑性変形挙 動」、日本機械学会、2010年度年次大会、名 古屋工業大学、2010.9.7 〔産業財産権〕 ○出願状況(計2件) ①名称:二硼化チタン系焼結体及びその製造 方法 発明者:吉田政司 権利者:独立行政法人国立高等専門学校機構 種類:特許 番号: 特願 2011-205109 出願年月日: 平成 23 年 9 月 20 日 国内外の別:国内 ②名称:二硼化チタン系焼結体及びその製造 方法 発明者:吉田政司 権利者:独立行政法人国立高等専門学校機構 種類:特許 番号: 特願 2010-211107 出願年月日:平成22年9月21日 国内外の別:国内 6. 研究組織 (1)研究代表者 吉田 政司(YOSHIDA MASASHI) 宇部工業高等専門学校・機械工学科・教 授 研究者番号:10370024 (2)研究分担者 藤田 和孝(FUJITA KAZUTAKA)

宇部工業高等専門学校・機械工学科・教 授 研究者番号:10156862 (平成21年度のみ参画)