There is still limited information about biofilm formed by Streptococcus pneumoniae, as well as the treatment of biofilm diseases is also controversial. To evaluate the characteristics of S. pneumoniae biofilm, we conducted the following study. A new system was designed to investigate the formation of S. pneumoniae biofilm, which includes newly defined biofilm culture condition, biofilm microtiter assay, and the utilities of confocal laser scanning microscopy (CLSM) and scanning electron microscope (SEM). We detected the varieties of S. pneumoniae biofilm existed in the strains with different serotypes and antimicrobial susceptibilities. We also investigated the in vitro expression of genes relevant to antimicrobial resistance, pathogenicity and adherence in the planktonic or biofilm condition, with or without antibiotic treatment (meropenem) for TIGR4 strain. As a result, the higher expression of genes relevant to antimicrobial resistance and pathogenicity was detected in the biofilm condition after meropenem treated. In this study, we designed a new biofilm observation system, and our data indicated that S. pneumoniae is capable to produce biofilm, and many factors such as serotypes, and antimicrobial susceptibilities especially when S. pneumonia is under antibiotics treatment may affect the biofilm formation. All these findings are supposed to be a part of new evidences to establish an effective biofilm diseases treatment strategy.

<table>
<thead>
<tr>
<th>年度</th>
<th>直接経費</th>
<th>間接経費</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009年度</td>
<td>1,200,000</td>
<td>360,000</td>
<td>1,560,000</td>
</tr>
<tr>
<td>2010年度</td>
<td>1,000,000</td>
<td>300,000</td>
<td>1,300,000</td>
</tr>
<tr>
<td>2011年度</td>
<td>1,100,000</td>
<td>330,000</td>
<td>1,430,000</td>
</tr>
<tr>
<td>合計</td>
<td>3,300,000</td>
<td>990,000</td>
<td>4,290,000</td>
</tr>
</tbody>
</table>
一．研究開始当初の背景

近年、臨床上問題となる多くの難治性感染症にバイオフィルムが関係していると言われるようになり、様々な研究が行われるようにになった。とりわけ緑膿菌においては、これまで詳細な研究がなされているものの、その他の菌種についてはまだ不明な部分が多い。最近、人の上気道に常在し、時に中耳炎などの耳鼻咽喉科領域感染症、膿膜炎、下気道感染症を引き起こす肺炎球菌が緑膿菌等と同様にバイオフィルムを産生することが報告されてきた。我々は、インフルエンザ菌や人気道上皮細胞上や鼓膜などでバイオフィルムを産生することを報告した。現在、インフルエンザ菌や肺炎球菌は耐性菌が増加傾向であり、臨床的にも難治性の増加が問題となっているが、難治化の要因として薬剤耐性に加えバイオフィルムのどの程度関与しているかどうかは明らかになっていない。そのような背景の下で、本邦における市中肺炎の起炎菌として最も多く、かつ小児の中耳炎、膿膜炎の主な起炎菌である肺炎球菌の難治化の要因としてバイオフィルムがどの程度関与しているかを明らかにし、かつその治療戦略をたてるために本研究を着想するに至った。

二．研究の目的

本研究の目的は本邦において、臨床的問題となっているペニシリン耐性肺炎球菌（PRSP）を含めた肺炎球菌がバイオフィルムを産生し、耐性化の一因となっているかどうかを明らかにし、かつ治療戦略をたてることである。

三．研究の方法

1) 肺炎球菌臨床分離株及びATCC標準株を5%血液寒天培地で培養し、臨床株の血清型及び最小発育阻止濃度（MIC）を確認する。分子生物学手法にて、該当菌株のペニシリン、マクロライド及びキノロン耐性遺伝子を調べ、比較する。

2) Trypticase Soy broth（TSB）、Mueller Hinton Broth（MHB）、Brain heart infusion broth（BHI）及びBHIにグルコース（10 mg/ml）を添加したsBHI計4種類の液体培地を選定し、肺炎球菌によるバイオフィルムの産生を測定した。

3) 試管内の培養液を用いて、96 wellsマイクロプレート1菌種3穴ずつ、200μlずつ接種し、37℃、5%CO₂の条件下で培養し、各菌株のバイオフィルムの産生能をmicrotiter biofilm assay（MBA）法にて、測定した。

4) 肺炎球菌が産生したバイオフィルムをconfocal laser scanning microscopy（CLSM）にて観察した。

5) バイオフィルムを産生させた後、meropenem（MEPM）添加の有無により、Real-time PCR方法にて、薬剤耐性、病原性及び付着因子に関する遺伝子発現の変化を検討した。

四．研究成果

1) 今回の研究において、臨床分離株K-112、K-116、K-129、K-29、TIGR4（ATCCBAA-344）及びATCC49619株を用い、解析を行った。MICと結果により、K-116株は多剤耐性菌株であることを判明した（表1）。ペニシリン耐性に関わるpbp遺伝子を確認した結果により、K-116株はすべてのpbp遺伝子において、変異が見られ、重度のマクロライド耐性に関する遺伝子（ermAM）の変異も認められた。K-112及びATCC49619株はキノロン耐性に関するparC、gyrA遺伝子での変異が認められなかったが、K-116株はgyrAの81、114番目のアミノ酸、parCの82、94番目のアミノ酸の変異が認められた。

<table>
<thead>
<tr>
<th>Strain No.</th>
<th>Sero-type</th>
<th>MICs (μg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PCG</td>
<td>EM</td>
</tr>
<tr>
<td>K-112</td>
<td>15F</td>
<td>0.03</td>
</tr>
<tr>
<td>K-116</td>
<td>15F</td>
<td>4</td>
</tr>
<tr>
<td>K-129</td>
<td>14</td>
<td>0.25</td>
</tr>
<tr>
<td>K-29</td>
<td>19F</td>
<td>2</td>
</tr>
<tr>
<td>ATCC49619</td>
<td>19F</td>
<td>0.25-1</td>
</tr>
<tr>
<td>TIGR4</td>
<td>4</td>
<td>0.032</td>
</tr>
</tbody>
</table>

表1

2) TSB、MHB、BHI、及びsBHI計4種類の液体培地を用いて、薬剤非感受性株、TIGR4及びATCC49619株を対象とし、MBA法にて、バイオフィルムの産生能を検討した結果により、いずれの菌株では、sBHIを培養した場合には、ほかの培養方法より、菌の増殖は安定し、より高いバイオフィルム産生能が測られた（図1）。24時間において、ATCC49619株、K-116株はK-112株に対し、biofilm産生における有意な差が認められた（P=0.003）、K-116とATCC49619株間の差は認められなかった（図2）。

研究分野：医薬薬学
科学費の分野・細目：内科系臨床医学・感染症内科医学
キーワード：肺炎球菌、バイオフィルム、難治性感染症
3) CLSM にて、上述した 4 種類の液体培地を用いて、TIGR4 によるバイオフィルムの形態を観察し、MBA 法による結果と一致することが示唆された（図 3、図 4）。

4) MEPM 添加の有無により、TIGR4 株を対比し、Planktonic 状態及びバイオフィルムにおける主要な薬剤耐性、病原性及び付着因子に関する遺伝子の発現を測定した。結果として、MEPM を投与後、Planktonic 状態において、ermB 以外のどの遺伝子の発現は抗生剤未投与時に比べて低くなっていたが、バイオフィルムにおける一部の病原因子や薬剤耐性遺伝子の発現が抗生剤未投与時により増加していたことが示唆された（図 5、図 6）。

5. 主な発表論文等
（研究代表者、研究分担者及び連携研究者には下線）

[雑誌論文（計 17 件）]
2) Qin L, Zhou Z, Hu B, Yamamoto T, and Watanabe H. Antimicrobial susceptibilities and genetic
characteristics of *Haemophilus influenzae* isolated from community acquired respiratory tract infection patients in Shanghai City, China. J Infect Chemother, 查 調 有 2012 [Epub ahead of print].


influenzae isolated from community acquired respiratory tract infection patients in China」 第 59 回日本化学療法学会西日本支部総会、奈良、2011.11.24.
2) 澤邊 浩 「教育セミナー、呼吸器感染症のトピックス、インフルエンザの基礎知識と対策」 第67回日本呼吸器学会・日本結核病学会九州支部秋季学術講演会、福岡、2011.11.19.
5) 澤邊 浩 「若手医師と看護師のためのセミナー、MRSA 感染症の実態とその対策」 第20回日本脊椎インストゥールメンテーション学会、久留米、2011.10.29.
6) 澤邊 浩 「ICD 講習会、他職種多領域の連携と感染制御、久留米大学病院における ICD 活動の現状」 第81回日本感染症学会西日本地方学会術集会、北九州、2011.10.8.
7) 澤邊 浩 「シンポジウム 4、感染症ワクチン：日本人におけるワクチンマネージメント、海外渡航とワクチン」 第81回日本感染症学会西日本地方学会術集会、北九州、2011.10.8.
8) 上村勇作、秦 亮、日高秀信、渡邊 浩 「肺炎球菌バイオフィルム観察システムの構築についての検討」 第81回日本感染症学会西日本地方学会術集会、北九州、2011.10.7.
12) 澤邊 浩 「インフルエンザ菌による小児急性中耳炎の難治化に関する検討」 日米医学協力研究会急性呼吸器感染症専門部会会議、東京、2011.1.18.
13) 澤邊 浩 「中国における市中気道感染症原体についての臨床的調査」 第 58 回日本化学療法学会西日本支部総会、大分、2010.11.26.
14) 上村勇作、秦 亮、後藤憲志、渡邊 浩 「The role of antimicrobial effect of imipenem for the nontypeable Haemophilus influenzae biofilms in vitro」 第80回日本感染症学会西日本地方学会術集会、松山、2010.11.19.
15) 澤邊 浩 「教育講演 2、海外渡航関連感染症とトラベルクリニック」 第80回日本感染症学会西日本地方学会術集会、松山、2010.11.19.
16) 上村勇作、秦 亮、後藤憲志、渡邊 浩 「The role of antimicrobial effect of imipenem for the nontypeable Haemophilus influenzae biofilms in vitro」 第80回日本感染症学会西日本地方学会術集会、松山、2010.11.19.
18) 澤邊 浩 「Nontypeable Haemophilus influenzae が産生したバイオフィルムに対する抗生物質
の効果についての基礎的検討」第24回Bacterial Adherence and Biofilm学術集会, 東京, 2010.7.9.
21) 渡邊 浩 「レクチャー3 呼吸器感染症のABC・細菌性肺炎の診断と治療」第58回日本化学療法学会総会、長崎、2010.6.4.
23) 奏 亮, 木田 豊, 渡邊 浩 「ワクチン攻撃29, バイオフィルム, Impaired Streptococcus pneumoniae capsular polysaccharide promotes biofilm formation」第84回日本感染症学会総会, 京都, 2010.4.6.
24) 矢野寿一, 山崎幸浩, 仲田俊弘, 後藤 Owner, 新井和明, 平瀬洋一, 賀来浩, 渡邊 浩 「ワクチン攻撃29, バイオフィルム, 急性中耳炎患者から分離されたインフルエンザ菌のバイオフィルム産生能と細胞内侵入性の検討」第84回日本感染症学会総会, 京都, 2010.4.6.

[図書] (計7件)
1) 奏 亮, 渡邊 浩 「インフルエンザ菌 (Haemophilus influenzae) 病原菌の今日的意味 改訂 4版 341-352, 2011.
2) 奏 亮, 渡邊 浩 「口.抗微生物薬に関する疑問 2. ペニシリン / セフェム / カルバペネムはどう使い分ければいいか?」 呼吸器感染症における不思議 50 8-13, 2011.

３) 奏 亮, 渡邊 浩 「新版 感染症診療実践ガイド 有効な抗菌薬の使いかたのすべて：抗ウイルス薬 (抗HIV薬を除く)」 Medical Practice 28（増刊号）:142-149, 2011.
4) 奏 亮, 渡邊 浩 「テーマ：検査や画像から感染症の原因微生物に迫る－細菌感染症難治化とバイオフィルムの関連－」臨床感染症ブックレット3, 129, 2011.
6) 原 奏 亮, 渡邊 浩 「インフルエンザの最新知識 Q & A 2010 バンデミック H1N1 2009 第一波を振り返ってー一般的な予防法とその効果はー」, 医薬ジャーナル社, 82-84, 2010.

ホームページ等
http://www.med.kurume-u.ac.jp/med/virol/

6. 研究組織
(1)研究代表者
渡邊 浩 (Hiroshi Watanabe)
久留米大学・医学部・教授
研究者番号：902950080

(2)研究分担者
奏 亮 (Qin Liang)
久留米大学・医学部・助教
研究者番号：40461404

(3)連携研究者

研究者番号：