様式C－19

科学研究費助成事業（科学研究費補助金）研究成果報告書

平成24年 4月 2日現在

研究課題名（和文） H-MRI, P-MRSによる咬合の咀嚼筋に及ぼす影響の画像的評価

研究課題名（英文） The evaluation of the effect of the occlusion on the masticatory muscle using H-MRI and P-MRS.

研究代表者
筑井 枫 (Chikui Toru)
九州大学・歯学研究院・准教授
研究者番号: 10295090

研究成果の概要（和文）:

開閉口、喰みしめによる咬筋の変化をMRIおよびMRSにより評価した。拡散固有値は、筋の伸展、収縮の状態を反映し、深層、浅層といった各コンパートメントの変化を反映していた。また、T2值は喰みしめ時に減少し、その後一度性に増大し、徐々に元の値に回復した。圧による血流遮断、その後の一過性の血流増加、回復に相当していると考えられた。最終的に31P-MRSでは、歯牙接触によるADPの指標であるPi/PCr比の変化を評価した。歯牙接触時は、増大したが、その後よりも減少し、5分後には元の状態に回復した。

研究成果の概要（英文）:

We evaluated the effects of various task like jaw opening, jaw closure and tooth contact on the masseter muscle by using both MRI and MRS. The eigenvalues of the diffusion tensor were affected by the jaw position. Moreover, recruitment of the specific muscle fibers within the masseter muscle was reflected in differing changes at the different position. The T2 of the masseter muscle was expected to decrease with contraction because the increased intramuscular pressure caused the decrease of perfusion and to increase rapidly after the contraction, because of the reactive hyperemia. After the rapid increase, it decreased gradually. Finally, we evaluated the Pi/PCr ratio, which was indicative of the concentration of ADP by using 31P-MRS. It increase during tooth contact, however, it decrease immediately after tooth contact, and after 5 minutes, it declined to the same level as at rest.

交付決定額

<table>
<thead>
<tr>
<th>年度</th>
<th>直接経費</th>
<th>間接経費</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009年度</td>
<td>1600000</td>
<td>480000</td>
<td>2080000</td>
</tr>
<tr>
<td>2010年度</td>
<td>1100000</td>
<td>330000</td>
<td>1430000</td>
</tr>
<tr>
<td>2011年度</td>
<td>500000</td>
<td>150000</td>
<td>650000</td>
</tr>
<tr>
<td>総計</td>
<td>3200000</td>
<td>960000</td>
<td>4160000</td>
</tr>
</tbody>
</table>
研究分野：歯科放射線
科研費の分科・細目：歯学・病態科学系歯学・歯科放射線学
キーワード：咬筋、拡散テンソル、T2 値

1. 研究開始当初の背景

最近、T2 強調像や拡散強調画像により、筋肉の損傷や、筋負荷による筋活動部位を明らかにする試みが、四肢の筋肉を中心に行われるようになっている。しかし、咀嚼筋の領域ではそのような検討は殆どなされていない。

形態的解析により、最大断面積を示す筋肉の位置が、開閉口において変化する事により、筋肉全体の形態が単なる機械的な収縮、伸張ではなく、内部の筋繊維の複雑な収縮、伸展であることを示した報告はあった。しかし、構成要素である、筋束の構造変化、細胞外スペース、血流などの内部要素における変化に対しての考察がされた文献は殆どみあたらないのが現状であった。

2. 研究の目的

MRIを用い、生理的活動による咀嚼筋の変化を把握し、筋肉内部に起こっている生理的変化をあわせて考察する事を目的とした。特に筋束の構造変化として、拡散係数に注目し、代謝としては31P-MRS によるPi/PCr比に注目した。

3. 研究の方法

すべての臨床研究に関しては、倫理委員会の承認を経て行われた。

(1) task による拡散係数の変化の検討
① 嘴みしめによる拡散係数（ADC）の変化
37名のボランティアにたいして、安静時および嘴みしめ時における咬筋のADCを算出し
た。Pressure-sensitive Paper (Dental Prescale 50H, type R; Fuji Photo Film Co.)、解析装置（Dental Occlusion Pressuregraph FPB-705; GC Co.) を用いて咬合力を測定した。片側の咬合力が、左右の40〜60%とするほぼ対照的な咬合力を有する群を対象とした。

拡散強調画像の撮像条件は、b factor: 0, 300, 600 s/mm²を用い、拡散をエンコーデする motion-probing gradient（MPG）は、前後（PA）、左右（RL）、上下（SI）の3 軸を用いた。各方向での拡散係数 ADC-PA, ADC-RL, ADC-SI を算出した。測定は最大面積部で行った。撮像是、嘴みしめ前、嘴みしめ中、直後、5 分後、10 分後で行った。

② 閉閉口による拡散テンソルの変化
11名のボランティア撮像を行った。MPG は、15 軸として、b factor は、0 と 600 s/mm² を用いた。計測は、下顎前庭、下顎孔、下顎歯根尖の3箇所で行なった。拡散テンソルの解析には、Diffusion TENSOR Visualizer, (free software by Masutani: http://www.u-t-rayology.umin.jp/people/masutani/dTV.htm) を用いておこなった。高分解能画像との重ねあわせをおこなって部位の確認を行った。撮像是、安静時、開口時、嘴みしめ時に行った。

(2) 嘴みしめに伴うT1、T2時間の変化の検討
11名のボランティア撮像を行った。最大咬合力での嘴みしめ20sとその前後の変化を検討した。検討した項目は、T1時間、T2時間、およびbalanced fast field-echo (b FFE) の信号強度である。
T1時間算出には、高速化のため、multi-shot Look-Locker sequenceをもちいた。今回の測定では、反転パルス間を10sとして、その間30のトリガーポイントで計測した。T1算出に当たっては以下の公式を用いた。

\[SI = \text{abs}[A - B \cdot \exp(-T'/T_{1}')] \]

\[T_{1} = T_{1} ' \cdot [(B/A) - 1] \]

SI: 信号強度、T1: トリガーデリタ、
T1’:見かけのT1時間

T2算出に関しては、高速化のため、multi-shot multi-echo spin-echo echo-planar imaging sequence (MS-SE-EP)を用いて行った。TE時間は13ms毎の6つ設定（13ms-78ms）し、以下の式より、算出した。

\[SI = M \cdot [\text{exp}(-T2/TE)] \]

b FFEのsequenceに関しては、脂肪抑制法water selective excitation (Proset)を併用した。

これら的方法により、T1時間、T2時間、b FFEの信号強度の計測は、それぞれ、20s毎、7.6s毎、0.9s毎に行うことが可能となった。安静40秒後、20秒の最大咬合圧での聴聴し、その後、10分になるまで、撮像を続け、解析した。

(3) 噴みしめによる2P MRSの変化

7名のボランティア撮像を行った。専用のP-100 coilを用いて、scan mode: single volumeでdata収集を行った。関心領域の設定は、ISIS法にて行った。ADP濃度の指標とされる、Pi/PCr比を算出した。安静時、軽度聴聴し、その後、5分後、10分後にMRSのデータを採取した。各MRSの撮像は、4分47秒を要した。

4. 研究成果

(1) task による拡散係数の変化の検討

①聴聴による拡散係数(ADC)の変化

咬合力が左右ほぼ対象なものを持つため、各パラメーターにおいて、左右の有意差を認めなかった。その為、検討は、左右の平均値を用いて行った。

まず、聴聴により、ADC-PA、ADC-RL、ADC-SI とは、有意に増大し、聴聴後、急激に低下した。

また、静止時、聴聴時、聴聴後とも、ADC-RLが最も大きな値を示した。一方、聴聴によるADC-PA、ADC-RL、ADC-SI の変化率は、19.8±19.7％、31.5±25.1％、15.5±16.7％であり、ADC-RLの変化率が最も大きかった。筋肉は、その形態より拡散異方性がいわれており、咬合でも、拡散異方性を確認できた。また、咬筋が顔骨筋から下顎角部に前方から後方に上昇することにより、咬筋走行に影響するADC-PA、ADC-SIはADC-RLより大きくなっ

②閉開口による拡散テンソルの変化

閉口による L2、L3は、上方部 (P = 0.006、P = 0.0001)および中央部 (P = 0.004、P = 0.0001) で静止時に比較して有意に減少した。閉口による筋の伸張に伴い、筋線維事態のサイズの減少する事が、関与していると考えられた。この傾向が、中央部より上方に限局していたことは、閉口には特に咬筋の深層層が関与しており、上方で深層の割合が多いことが関与していると考えられた。

一方、閉口による変化は、L1、L2の増加を認めた。特にL2で顕著であり、上方、中央部、下方のいずれも部位でも有意差を認めた。これは、①の結果も合わせて考えると、筋肉の形態の伴う変化と考えられた。
このように拡散テンソルの固有値の変化は、筋繊維の構造を反映していると思われた。さらに、開口や閉口なおタスクに寄与する部分が異なるため、場所により、固有値変化に差があった者と考えられた。

次に画像データより、決定論的方法をもって、筋線維の抽出（トラクトグラフィー）を評価した。安静時、開口時（上図）は、抽出が良好であったが、咬合時（下図）には、ほぼ全症例において、途中で連続性が失われていた。（上：開口時、下：閉口時）

拡散の偏りの大きさ（fractional anisotropy; FA）の閾値を0.15から0.24の範囲で変化させ、当てはまる領域の割合を検討した。下顎孔レベルでは、開口時、FA 0.15の時、97％であり、FA 0.24でも、85％の領域が抽出された。安静時は、FA 0.24の時、70％であり、閉口時では、FA 0.24の時、59％と非常に低い値となった。閉口時では、閾値以下のFAの領域が、ハサの断面のように広がった。咬筋が複数の層からなることを考えると開口、噛みしめによる局所における筋束の複雑な走行変化が、FAの低下をもたらし、決定論的方法による筋線維抽出を困難にしていく事が明らかになった。

(2) 噛みしめに伴うT1、T2時間の変化の検討

T2 値は、最大喫みしめ時に減少した。これは、機械的圧迫による血流遮断の影響によるものと思われた。喫みしめ直後に、喫みしめ終了後 16.8±7.6 秒で、peak となった。Peak の高さは、安静時の T2 値の 1.11±0.03 倍であった。このことは、血流遮断後の一過性の血流量増大に関与していると思われた。なお peak 後は、徐々に減少し、安静時の値にもどった。これらの結果は、近赤外線分光法による咬筋の血流量変化の報告と非常に似た結果となった。

T1 値は、喫みしめ後、軽度上昇し、徐々に減少したが、変動は全体的に小さく、peak の高さも 1.04±0.02 倍と小さかった。

b FFE による信号強度は、T2 値のように
嗜みしめによる減少→嗜みしめ直後の急激な増加（peakの高さ1.09±0.03, peakの時間、嗜みしめ後21.9±13.9秒）→緩やかな減少といった3相性の変化をとった。b FFEの信頼強度は、定常状態では、T1/T2に影響を受けるため、今回の実験では特に変動の大きいT2の影響をうけたものと思われた。

(3) 嗜みしめによる3P MRSの変化

軽度かみしめによる経時的変化をP-MRSを用いて行った。ADP濃度の指標とされるPi/PCr比を検討した。安静時は、0.15±0.05であったが、閉口時は、0.40±0.28と上昇した。その直後は、0.22±0.16と減少し、5分後には、安静時よりも下だった。この事は、かたりい閉口では、task時にはわずかにADPの蓄積を認めることの、比較的早期に大に回復する事が明らかになった。これは、taskが軽度負荷であった事が理由であると思われ、睡眠中の歯ぎしりなどの長時間、強い咬合では異なる結果になると考えられた。また負荷終了後、（2）実験で見られた一致の血流増大もADP蓄積に対して予防的にはたらいたものと思われた。

今回は、正常ボランティアを元に解析をおこなかったが、今後は病状を重視（特に筋痛症を訴えるもの）の変形歯合症の患者への応用することにより、新たな診療的な診断基準に策定につながるものと考えられる。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者には下線)

研究代表者、研究分担者及び連携研究者には下線

[雑誌論文]（計4件）すべて査読あり

[学会発表]（計3件）
3. 筆井 徹. 咬合による咬筋のT1, T2値, balanced SSFPの信号強度の変化の検討. 第29回日本画像医学会2010.2.27. 東京.

6. 研究組織

(1)研究代表者

筆井 徹 （CHIKUI TORU）
九州大学・医学研究科・准教授
研究者番号：10295090
(2) 研究分担者
岡村 和俊 （OKAMURA KAZUTOSHI ）
九州大学・大学院歯学研究院・助教
研究者番号：20346802

河津 倫幸 （KAWAZU TOSHIYUKI ）
九州大学・大学病院・助教
研究者番号：20291960

德森 謙二 （TOKUMORI KENJI ）
九州大学・大学病院・助教
研究者番号：40253463

吉浦 一紀 （YOSHIURA KAZUNORI ）
九州大学・大学院歯学研究院・教授
研究者番号：20210643

(3) 連携研究者
該当なし