科学研究費助成事業(科学研究費補助金)研究成果報告書

平成24年6月5日現在

機関番号:32621
研究種目:若手研究(A)
研究期間:2009~2011
課題番号:21684023
研究課題名(和文)クーロン結晶を用いた極低エネルギー極性分子-イオン衝突反応の研究
研究課題名(英文)Astudy of cold ion-molecule reactions between ionic Coulomb crystal and slow polar molecules 研究代表者 岡田 邦宏(OKADA KUNIHIRO) 上智大学・理工学部・准教授 研究者番号:90311993

研究成果の概要(和文):極低温イオンー極性分子反応における反応速度測定を目的とした実験 装置を新たに開発した。まず、低速極性分子ビーム生成のためのシュタルク分子速度フィル ターを新規に製作し、実際に低速 ND₃, CH₂O, CH₃CN ビームの生成に成功した。特に、低速 CH₃CN ビームの生成は本研究において初めて行われた。低速極性分子ビームの速度分布は飛行時間 法により決定し、ピーク速度 23⁻⁴⁰ m/s (換算温度 1⁻⁶ K)を得た。また、極性ガス導入時の 圧力値と低速極性分子検出器の信号強度とを比較することにより、反応速度定数の決定に重 要な分子数密度 nを決定した (n =10^{4⁻}10⁶ cm⁻³)。以上の準備の後、シュタルク分子速度フィ ルターにより生成された低速 ND₃, CH₃CN ビームと、レーザー冷却法により生成された Ca⁺ク ーロン結晶との極低温イオンー極性分子反応の反応速度測定を行った。得られた反応速度は いずれも 10^{-6⁻}10⁻⁵ /s のオーダーであり、低速 ND₃, CH₃CN と Ca⁺クーロン結晶との反応性が 極めて低いことが確認された。本研究の結果は、レーザー冷却された Ca⁺イオンとの共同冷 却で得られる極低温分子イオンと、シュタルク分子速度フィルターによって得られる低速極 性分子との反応速度測定が原理的に可能であることを示している。これが本研究の重要な成 果である。

研究成果の概要(英文): We have developed a new experimental apparatus to measure the reaction rates of cold ion-polar molecule reactions. First, the Stark velocity filter was developed for the generation of slow polar molecules. We have successfully produced slow ND₃, CH₂O, and CH₃CN beams with a peak velocity of 23 ~ 40 m/s. In particular, the generation of slow CH₃CN beam was carried out for the first time in this study. In addition, the number density of slow molecules was determined to be $n = 10^4 \sim 10^6$ cm⁻³, that is an important parameter to determine the reaction rate constant. Finally, the reaction rates between the Ca⁺ Coulomb crystals and the slow polar molecules were measured. The reaction rates are of the order of $10^{-6} \sim 10^{-5}$ s⁻¹, which are very slow compared to a typical reaction rate of a molecular ion-polar molecule reaction at very low temperatures. This fact show that Ca⁺ is suitable for a coolant of sympathetic cooling of molecular ions, which are supplied for performing the reaction-rate measurements of cold ion-polar molecule reactions. This is an important achievement of this study.

交付決定額

(金額単位:円)

			(亚城十匹・11)
	直接経費	間接経費	合 計
2009 年度	9,000,000	2, 700, 000	11, 700, 000
2010 年度	2, 700, 000	810,000	3, 510, 000
2011 年度	600,000	180,000	780,000
総計	12, 300, 000	3, 960, 000	15, 990, 000

研究分野:原子・分子・量子エレクトロニクス

科研費の分科・細目:物理学、原子・分子・量子エレクトロニクス キーワード:イオントラップ、クーロン結晶、低速分子線、極性分子

1. 研究開始当初の背景

イオントラップを用いた研究の最大の利 点は、実験者自らが選択したイオンを長時間 にわたり狭い空間に閉じ込め、必要なだけ相 互作用を与え続けることができる点にある。 この利点は特にレーザー冷却法を用いて生 成されるイオンのクーロン結晶に対して最 大限に発揮される。例えば相互作用が電磁波 である場合, エネルギーと時間の不確定性関 係から理解されるように原子の超精密分光 が可能であり,実際に量子ゲートの実証実験 や光周波数領域での精密測定が行われてい る[T. Rosenband et al. PRL 98, 220801(2007)]。

一方、相互作用が電磁波ではなく中性分子 の場合、結晶化した個々のイオンと分子の反 応を識別して観測することが原理的に可能 である。最近、オックスフォード大学のグル ープがシュタルク効果を用いて低速極性分 子 CH₃F 分子を選別し、Ca⁺クーロン結晶に対 して照射する実験を行ない、単一粒子レベル の観測によって極低温における Ca⁺ + CH₃F → CaF⁺ + CH₃ 反応速度の測定を試みた[S. Willitsch et al., PRL 100, 043202 (2008)]。彼ら の実験では線形ポールトラップ中で Ca⁺クー ロン結晶を生成して実験を行っているが、標 的として用いたイオン数は高々250 個であり, より大きなクーロン結晶を利用することが できていなかった。

一方、極低温イオンー分子反応は星間分子 雲の化学進化を解明するための重要な情報 であることが知られている[Wakelam et al., A&A 444.883(2005)]。星間分子雲がどのよう な進化過程を経て星を形成していくかを知 るためには、個々の反応過程が起こる速さ (反応速度)を知り、それに基づいた理論計 算の結果と天文観測(分子存在度)の比較を 行うことが必要である。しかしながら、極低 温(80K以下)で直接測定されたイオン-分 子反応速度定数のデータは殆ど存在しなか った。すなわち、本研究の成功は、星間分子 雲の化学進化の解明にとって重要な情報で ある分子イオン-極性分子反応の速度定数 を極低温で直接測定することができる数少

ない実験方法を提供するという意味で重要 な意義をもつものと考える。ALMA 計画に代 表される近年の天文観測技術の向上には目 を瞠るものがあり、将来的に極低温領域で測 定された精密な反応速度定数データの重要 性が増すであろうと考える。

2. 研究の目的

本研究では、線形ポールトラップを含む高 周波多重極線形イオントラップ中で生成さ れたクーロン結晶に対して低速極性分子を 照射し、極低温イオンー極性分子反応を直接 測定する方法を確立することを目的とした。 また、レーザー冷却された Ca⁺イオンだけで はなく、共同冷却法を用いて得られる極低温 分子イオンと低速極性分子との反応速度測 定へ拡張することも視野に入れて研究を行 なった。

研究の方法

本研究は、シュタルク分子速度フィルター により生成された低速極性分子線と、レーザ ー冷却法によって生成された Ca⁺クーロン結 晶とを衝突させ、極低温イオンー極性分子反 応の反応速度測定を行う。シュタルク分子速 度フィルターは極性分子の回転準位のシュ タルク効果を利用して、マクスウェル-ボル ツマン分布した分子集団から低速の分子の みを取り出す実験装置である。

本研究において新たに開発した実験装置 全体図を図1に示す。シュタルク分子速度フ ィルターを収納した真空槽の寸法は 540× 440×275 mm であり、材質は超高真空用アル ミ合金を用いた。この真空槽は差動排気を行 うために第一真空槽と第二真空槽に分離さ れている。シュタルク分子速度フィルターの 出口はイオントラップを収納した検出真空 槽に接続されている。検出真空槽の真空度は 超高真空(~10⁻⁸ Pa 以下)が達成されている。 本装置では、極性分子を入射するガスノズル 部を極低温冷凍機のコールドヘッドと熱接 触させることによって,入射ガスの温度を下 げられるような構造とした(最低温度は約 50K)。温度可変とするために、コールドヘッ

ドにはセラミックヒーターを取り付けた。入 射ガスを適度に冷却することで低速分子流 量を増やすことができる。また、ガスノズル 導入口に2ヶ所のポートを設けており,将来 的に混合ガスの実験を行うことが可能であ る。

四重極分子線ガイドは¢2mmの円柱電極4 本により製作した。第一真空槽、第二真空槽 でそれぞれ曲率半径 12.5 mm, 25 mmの屈曲 部をもつ。ガイドの全長は941.8mmである。 四重極電極には最大で±3 kVの電圧を印加 することが可能である。また,低速分子線の 飛行時間(TOF)スペクトル測定を行うため に高速スイッチ回路を組み,10 ns で電極電圧 の印加を行うことが可能となっている。シュ タルク分子速度フィルターの性能評価を行 うために、イオントラップの代わりに質量分 析計を設置し、飛行時間法による低速分子線 の速度分布測定と分子数密度測定を行った。

検出真空槽の写真を図2に示す。真空槽下 部にはターボ分子ポンプを設置し、上部には クーロン結晶観測用の特殊ポートを取り付 けた。このポートは図2の写真に示すように 窪んでいるため,高倍率でのクーロン結晶の 画像観測が可能となっている。検出真空槽に はさらに8つのポートがあり、Ca⁺冷却用レ ーザーの入射・出射用、高周波四重極線形イ オントラップの配線用、分子イオン生成用電 子銃設置用にそれぞれに利用している。

反応速度測定は以下の手順で行った。まず、 イオントラップ中に純粋な Ca⁺クーロン結晶 を生成し、レーザー誘起蛍光画像を冷却 CCD カメラによって撮影する。反応前・反応後の Ca⁺イオン数は、蛍光画像の大きさを測定す ることによって見積もることが可能である。 より正確なイオン数は、分子動力学シミュレ ーションによるシミュレーション画像と実 験画像の比較を行うことによって決定する [K. Okada *et al.*, Physical Review A 81, 013420 (2010)]。実験では、レーザー冷却用のレーザ 一周波数を固定し、低速極性分子ビームを照 射しながら一定の時間間隔で Ca⁺クーロン結 晶の蛍光画像を撮影することによって行わ れた。

4. 研究成果

シュタルク分子速度フィルターを用いた低速 CH₃CN 分子線の生成

研究成果の一つとして、本研究で開発した シュタルク分子速度フィルターによる低速 アセトニトリル分子(CH₃CN)の生成が挙げ られる。これまでシュタルク分子速度フィル ターを用いた低速 CH₃CN 分子線の生成は行 われたことが無かったが、本研究において初 めて低速分子線の生成が確認された。図2に 本研究で測定された低速 CH₃CN の飛行時間 スペクトルを示す。グラフから明らかなよう に良好なS/N比でTOFスペクトルが測定でき ていることが分かる。図3に示すのは飛行時 間スペクトルの微分にから求めた速度分布 である。並進ピーク速度を温度に換算すると 数 K と見積もることができ、極低温 CH₃CN 分子線の生成を確認できた。表1にはこれま でに本研究で得られた低速極性分子線の生 成のまとめを示した。分子数密度は、四重極 質量分析計を用いて実際に分子イオンが生 成される位置で測定した。CH3CNの場合でお よそ 10^5 cm⁻³ であり (±3.0 kV の場合)、反応 速度測定を行うために必要な分子数密度が 得られた。今後、同様の測定を様々な種類の 極性分子に対して行うことで、実験で利用で きる低速極性分子の種類を増やすことが可 能であることが本研究の成果の一つと言え るだろう。

図 3. 飛行時間スペクトル (図 2) から得られ た低速 CH₃CN の速度分布。代表的なエラー をピーク位置のエラーバーで示した。

Molecule	v _{peak} (m/s)	$T_{\text{peak}}(\mathbf{K})$	<i>n</i> (cm ⁻³)
ND ₃	23 ~ 40	1~4	3×10^4 ~ 9×10^5
CH ₂ O	23 ~ 32	2~4	9×10^4 ~ 1 × 10 ⁶
CH ₃ CN	23 ~ 34	3~6	5×10^{3} ~ 1 × 10 ⁵

表1. 低速分子線の生成結果。

(2) 極低温における Ca⁺ + ND₃, CH₃CN 反応
速度測定

シュタルク分子速度フィルターを用いて生成した低速 CH₃CN を Ca⁺クーロン結晶に衝突させ、反応時間約 10000 秒まで Ca⁺蛍光画像を繰返し測定した。画像解析によって得られた Ca⁺イオン数の反応時間依存性を図 4(a)に、反応前・後の Ca⁺クーロン結晶の蛍光画像を図 4(b)に示す。イオントラップ領域における低速アセトニトリル分子の数密度は

1.2(0.2)×10⁵ cm⁻³であり、並進ピーク速度は約 30 m/s (換算温度約 6K) である。また、レーザー冷却用 UV レーザーの離調は-30MHz であり、Ca⁺クーロン結晶の永年振動温度は10 mK 以下である。

図 5. 背景ガス (主に H_2) とのレーザー誘起 反応による Ca^+ クーロン結晶の減衰。真空度 は 1×10^{-8} Pa 以下である。

図4(a)の結果からCa⁺+CH₃CN反応は非常 にゆっくりとした反応であることが分かっ た。指数関数を実験データにフィットして得

られた反応速度は 2.7(6)×10⁻⁵ s⁻¹であり、低 速 CH₃CN を照射しないで測定された背景ガ ス(H₂)とのレーザー誘起反応 Ca⁺*(²P_{1/2}) + H₂ → CaH⁺ + H による反応速度と誤差の範囲で 一致した(図5)。図4(b)の画像上部の影の部 分には同位体である⁴⁴Ca⁺とレーザー誘起反 応により生成した CaH⁺が存在している。Ca⁺ + CH₃CN → products 反応の反応速度定数の 上限値は 2.3(0.6)×10⁻¹⁰ cm³/s であり、古典的 上限値(8.2×10⁻⁹ cm³/s)と比較して非常に小 さな値となった。この結果を考察するために 量子化学計算ソフト(Gaussian03)を用いて Ca⁺ + CH₃CN → products 反応のエネルギー ダイアグラム図6を作成した。その結果によ ると、本反応は励起状態 4p²P_{1/2}でのみ起こり 得ると考えられるため、反応速度が非常に遅 くなることが分かった。真の反応速度定数は、 実験的に得られた反応速度定数を励起状態 の占有密度で割った値であり、理論的予測と 矛盾しないことも分かった。

図 6. Ca⁺ + CH₃CN 反応のエネルギーダイア グラム。

本研究の結果から $Ca^+ (d x) O (- u) 2 (d x) O (d x) C (d x)$

以上の実験結果は、Ca⁺による共同冷却法を 用いて得られる極低温分子イオンと低速極 性分子との反応速度測定が可能であること を実証したことを意味する。今後、系統的な 極低温分子イオン-極性分子反応速度測定 の途を拓くことができたという点で大変意 義のある結果である。

5. 主な発表論文等

〔雑誌論文〕(計4件)

- "Sympathetic crystallization of CaH⁺ produced by a laser-induced reaction", N. Kimura, <u>K. Okada et al.</u>, Physical Review A 83 (2011) pp. 033422-1- 6(査読有) DOI: 10.1103/PhysRevA.83.033422
- ② "Stark velocity filter for producing slow polar molecules", T. Suganuma, <u>K. Okada</u>, *et al.*, RIKEN Accelerator Progress Report 44 (2011) pp.241 (査読有)
- ③ "Characterization of ion Coulomb crystals in a linear Paul trap", <u>K. Okada</u> et al., Physical Review A81 (2010) pp.013420-1-10 (査読有) DOI:10.1103/PhysRevA.81.013420
- ④ "Simple simulation method for characterization of ion Coulomb crystals in a linear Paul trap", <u>K. Okada *et al.*</u>, RIKEN Accelerator Progress Report 43 (2010) pp.234. (査読有)

〔学会発表〕(計 20 件)

- "Laser-induced reactions between a Ca⁺ Coulomb crystal and polar molecules", <u>K.</u> <u>Okada</u>, Special Report, XXVII International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC 2011), 27 July -2 August 2011, Belfast, Northern Ireland, UK.
- "シュタルク分子速度フィルターを用いた低速極性分子と Ca⁺クーロン結晶の反応測定",古川貴浩,菅沼拓也,<u>岡田邦宏</u>,和田道治,H. A. Schuessler,日本物理学会2011年秋季大会,21aEA-9,富山大学,2011年9月.
- (3) "Laser-induced reactions between a Ca⁺ Coulomb crystal and polar molecules", N. Kimura, <u>K. Okada</u>, K. Shiina, T. Suganuma, M. Wada, H. A. Schuessler, poster We087, XXVII International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC 2011), 27 July - 2 August 2011, Belfast, Northern Ireland, UK.
- ④ "A Stark velocity filter for studying cold polar molecule-molecular ion reactions", T. Suganuma, <u>K. Okada</u>, N. Kimura, K. Shiina, M. Wada, H. A. Schuessler, poster We088, XXVII International Conference on Photonic,

Electronic and Atomic Collisions (ICPEAC 2011), 27 July - 2 August 2011, Belfast, Northern Ireland, UK.

- ⑤ "シュタルク分子速度選別器を用いた極 性分子-イオン衝突実験", 菅沼拓也, 木 村直樹, <u>岡田邦宏</u>, 高柳俊暢, 和田道治, H.A. Schuessler, 日本物理学会第 66 回 年次大会, 28aRA-9, 新潟大学, 2011 年 3 月.
- (6) "共同冷却法による様々な原子・分子イオンのクーロン結晶化の観測",木村直樹, 椎名皓一,菅沼拓也,高柳俊暢,和田道治,H.A.Schuessler,<u>岡田邦宏</u>,日本物理 学会第66回年次大会,28aRD-12,新潟大 学,2011年3月._
- ⑦ "イオントラップとシュタルク分子速度 フィルターを用いたイオン-極性分子反応の研究",<u>岡田邦宏</u>,JAXA 宇宙科学研 究所 2010 年度 宇宙空間原子分子過程 研究会,"低温衝突-星間分子から量子 縮退期待まで" 2011 年 2 月 16 日
- ⑧ "極低温イオンー極性分子衝突反応実験のためのシュタルク速度選別器の開発II", 菅沼拓也,木村直樹,<u>岡田邦宏</u>,高柳俊暢,和田道治,H.A. Schuessler,日本物理学会2010年秋季大会,26aRH-9,大阪府立大学,2010年9月.
- ⑨ "クーロン結晶を用いた極低エネルギー 極性分子-イオン衝突反応の研究",<u>岡田</u> 邦宏,理研シンポジウム第1回拡が る原子分子物理研究"宇宙空間における 原子分子進化過程"2010年12月3日
- 1) "共同冷却法による CaH⁺のクーロン結晶 化の観測とその生成速度",木村直樹, 菅沼拓也, 高柳俊暢,和田道治,H.A. Schuessler, <u>岡田邦宏</u>,日本物理学会 2010 年秋季大会,25aRF-9,大阪府立大学, 2010年9月.
- "シュタルク分子速度フィルターの開発 とその現状", 菅沼拓也,内麻宏紀,谷口 貴紀,<u>岡田邦宏</u>,高柳俊暢,和田道治, H. A. Schuessler,原子衝突研究協会第35 回年会,2010年8月9日-8月11日.
- "共同冷却法による CaH⁺のクーロン結晶 化の観測", 木村直樹, 椎名皓一, 菅沼拓 也, 高柳俊暢, 和田道治, H.A.Schuessler, <u>岡田邦宏</u>, 原子衝突研究協会第 35 回年会, 2010 年 8 月 9 日-8 月 11 日.
- "Observation of a ring Coulomb crystal of Ca⁺ ions in a linear hexapole rf ion trap", <u>K.</u> <u>Okada</u>, T. Suganuma, N. Kimura, T. Takayanagi, M. Wada, H. A. Schuessler, 22nd International Conference on Atomic Physics (ICAP2010), Cairns, Australia,

25-30 July, 2010.

- (1) "Sympathetic crystallization of CaH⁺ produced by laser-induced chemical reaction", N. Kimura, T. Suganuma, <u>K. Okada</u>, T. Takayanagi, M. Wada, H. A. Schuessler, 22nd International Conference on Atomic Physics (ICAP2010), Cairns, Australia, 25-30 July, 2010.
- 「極低温イオンー極性分子衝突反応の研究を目的とした分子イオンの共同冷却", <u>岡田邦宏</u>,木村直樹,菅沼拓也,高柳俊 暢,和田道治,H.A. Schuessler,第10回 分子分光研究会,2010年5月15日,東京 工業大学(大岡山)
- 「極低温極性分子-イオン衝突反応実験のためのシュタルク速度選別器の開発", 岡田邦宏,木村直樹,菅沼拓也,高柳俊 暢,和田道治,H.A. Schuessler,日本物理学会第65回年次大会,23aTC-9,岡山大学, 2010年3月.
- ① "高周波6重極線形イオントラップを用いた円筒型クーロン結晶の観測", 菅沼拓也, 木村直樹, <u>岡田邦宏</u>, 高柳俊暢, 和田道治, H. A. Schuessler, 日本物理学会第65回年次大会, 21aTC-2, 岡山大学, 2010年3月.
- (1)8 "レーザー誘起反応により生成した分子 イオンのクーロン結晶化の観測",木村 直樹,菅沼拓也,<u>岡田邦宏</u>,高柳俊暢, 和田道治,H.A. Schuessler,日本物理学会 第 65 回年次大会,21aTC-3,岡山大学, 2010年3月.
- (9) "イオンのクーロン結晶の生成とその応用", <u>岡田邦宏</u>, 2009 年度 宇宙空間原子分子過程研究会"原子衝突におけるコヒーレント相互作用", JAXA 宇宙科学研究本部, 2010 年 3 月 1 日.
- 20 "極低温極性分子-イオン衝突反応実験のためのクーロン結晶の分子動力学シミュレーション", <u>岡田邦宏</u>, 木村直樹, 菅沼拓也, 高柳俊暢, 和田道治, 大谷俊介, H. A. Schuessler, 日本物理学会 2009 年秋季大会, 26aZF-10, 熊本大学, 2009 年 9月.
- 6. 研究組織
- (1)研究代表者
- 岡田 邦宏 (OKADA KUNIHIRO)上智大学・理工学部・准教授研究者番号: 90311993