科学研究費補助金研究成果報告書

機関番号:13904 研究種目:若手研究(A) 研究期間:2009~2010 課題番号:21685004 研究課題名(和文) 固液界面の脂質二重膜に形成される非平衡・非対称ドメイン内部での分子挙動の解明 研究課題名(英文) Molecular behavior in non-equilibrium and asymmetric domains formed in supported planar lipid bilayers 研究代表者 毛書 龍五 (TERO RYUGO)
研究代表者 手老 龍吾(TERO RYUGO)
豊橋技術科学大学・エレクトロニクス先端融合研究所・特任助教 研究者番号:40390679

研究成果の概要(和文):人工細胞膜モデルの一つである支持平面脂質二重膜を用い、脂質膜内 の微小領域における分子拡散挙動のその場観察および固体表面ナノ構造を利用した拡散挙動の 制御を行った。ミリ秒・100 nm~秒・µm の幅広いオーダーで蛍光一分子追跡を行うための顕 微鏡装置を構築した。斜入射照明によってシリコンや TiO₂ など基板の透明度や屈折率に依ら ずに一分子観察を行うことができた。表面ナノ構造が誘起する平面脂質膜中での異常拡散現象 をその場観察することに成功した。

研究成果の概要(英文): Molecular diffusion behavior in supported planar lipid bilayers at submicron regions were observed in situ, and controlled using nanostructures on solid substrates. I constructed a fluorescence microscope for single molecule tracking at the spatiotemporal order over millisecond / 100 nm to second / µm, and achieved the single molecule tracking on opaque substrates and high-refractive substrates such as silicon and titanium dioxide. In situ observation of lipid diffusion at 2000 fps to 33 fps revealed that surface nanostructures on the substrates induced anomalous diffusion in the supported lipid bilayer.

交付決定額

(金額単位:円)

	直接経費	間接経費	合 計
2009 年度	14, 400, 000	4, 320, 000	18, 720, 000
2010 年度	4,200,000	1, 260, 000	5, 460, 000
年度			
年度			
年度			
総計	18, 600, 000	5, 580, 000	24, 180, 000

研究分野:化学

科研費の分科・細目:基礎化学・物理化学 キーワード:一分子計測、脂質、表面・界面物性

1. 研究開始当初の背景

生命活動は細胞内外での情報・物質・エネ ルギーのやり取りで成り立っており、その授 受は細胞膜と膜タンパク質を介して行われ ている。脂質の二分子層膜を基本構造とする 細胞膜においては、複数の脂質分子が内膜・ 外膜に非対称的に存在し、また、「ラフト」 に代表される脂質の2次元ドメインを形成す ることで膜タンパク質の足場となる反応場 を提供する。また、スフィンゴ糖脂質である ガングリオシドの凝集ドメイン形成がアル ツハイマー病発症の初期過程に関わってい ることが報告されるなど、脂質二重膜内のド メイン形成の過程と構造ならびに分子拡散

図 1. 支持平面脂質二重膜(SPLB)内でのド メイン形成と分子拡散。

挙動の解明への要求が高まっていた。固液界 面に形成される支持平面脂質二重膜 (supported planar lipid bilayer: SPLB)は人工脂 質膜系の1つであり、

脂質膜内の分子拡散や ドメイン形成などの動的挙動(図1)を観察 するためのモデル系として用いられている。 私は本課題の申請時までにも SPLB を用いた 研究を行っていたが、主にホスファチジルコ リン(phosphatidylcholine: PC)のみを用いて空 間的に均一、あるいは平衡状態にある脂質膜 の静的状態を調べるに留まっていた。「ラフ ト」の本質が生成・消滅を繰り返す短寿命の マイクロドメインであることが提唱されて いることなどから、微小領域における脂質と その集合体の挙動を詳細に調べることが必 要である。また、細胞膜内に存在する微小ド メインのモデルとなる系を人工的に作製し 制御することができれば、SPLB をはじめと する細胞膜モデルシステムの高機能化に繋 がると考えた。

2. 研究の目的

本研究においては、SPLB を固体表面物性 までを含めた系としてとらえ、固体表面の物 理的・化学的特性を外場として積極的に利用 することとした。これにより SPLB の物性や 内部構造、非対称分子分布などの特性を制御 し、その内部での分子挙動を明らかにするこ とを目的とした。

SPLB 内の分子拡散(拡散係数 0.1-10 µm²/s)

図 2. (a)全反射条件での励起光入射によるエ バネッセント照明。(b)本研究で用いた斜入射 照明。

をその場観察するための実験手法として、蛍 光顕微鏡を用いた1分子追跡(single molecule tracking: SMT)を用いることにした。SMT 法 は蛍光ラベルした分子1分子を10 nm オーダ ーの位置決め精度でその場観察し、その動き をリアルタイムで追跡する非常に有力な手 法である。通常の SMT 法では試料をのせた カバーガラス裏面から励起光を全反射条件 で入射してエバネッセント照明する(図 2a)。 ガラスを通して照明と観察を行うことから 基板の透明度と屈折率による制限があり、こ れまではガラスや石英以外の基板を用いる ことは不可能だった。本研究では、様々な基 板材料を用いることを目的として、斜入射法 による試料照明(図 2b)による SMT 測定を行 った。蛍光汚染を徹底して取り除いたカバー ガラス上の約 500 nm の位置に試料を下向き に設置し、全反射条件よりもやや小さな入射 角で励起光を入射して照明することで、基板 の材質に制約されずにSPLBのSMT測定が可 能になった。本研究課題ではこの斜入射照明 法による SMT を用い、SPLB 中のミリ秒・100 nm- 秒・1 µm オーダーの範囲における時間 と空間で階層的な分子の振る舞いを明らか にすることを目指し、そのために必要な広範 囲・均一照明と高輝度照明・高速観察を行う ことのできる蛍光顕微鏡装置を構築した。

研究の方法

(1)斜入射 SMT 観察用顕微鏡装置の構築

対物レンズ型の全反射蛍光顕微鏡装置を 基本構造として用い、斜入射法でのSMT 観 察が可能な顕微鏡システムを構築した。この 装置ではレーザー光を励起光として用い、広 範囲・均一照明と高速観察用集光照明の2本 の励起光路を備えた。これら2つの光路を備 えた顕微鏡装置を構築して、対象とする観察 領域の空間スケール、時間分解能、基板材料 に応じて使い分けた。録画した動画から分子 拡散の軌跡を座標化のためにはウェブ上で 公開されている粒子追跡ソフトウェア (Particle Tracker, Image J Plug-in: https:// weeman.inf.ethz.ch/ParticleTracker/)を用いた。 拡散係数を算出するための統計的な解析に は Igor Pro 6 を用い、解析用プログラムを作

図3. 斜入射照明による1分子観察の光路図。 (a) 励起光を試料位置で平行光束とする広範 囲・均一照明。(b) 励起光を試料位置で集光 する高輝度照明。

図 4. (a)ステップ&テラス TiO₂(100)および (b)熱酸化 SiO₂/Si 表面の AFM 像。

成した。また、Dは温度に依存して変化する ため、試料温度を4~30℃の範囲で±0.5℃以 下の精度で制御することのできる試料ステ ージを作製した。

(2)表面ナノ構造を持つ基板上へのベシクル融合法による SPLB 形成

SPLB 内分子拡散への表面ナノ構造の影響 を調べるための基板として、ステップ&テラ ス構造を持つ TiO₂(100)単結晶表面を用いた。 TiO₂(100)表面上では HF によるウェットエッ チングと酸素焼成により単原子ステップと 平坦なテラスから構成される階段状の構造 が形成される。オフ角(理想的な(100)表面か らのずれ)が 0.05°以下の TiO₂(100)基板を用 いてウェットエッチングと酸素焼成を繰り 返すことにより、テラス内に原子ステップで 形成されるピットを持った表面を作製する ことができた(図 4a)。ステップ&テラス TiO₂(100)表面上では SPLB も基板表面構造を 反映したステップ構造を持ち[Tero et al. Langmuir, 24, 11567 (2008)]、ステップ状の歪 み部分が拡散障壁として働くと予想される。 熱酸化 SiO₂/Si 表面はランダムな凹凸を持ち、 piranha 溶液中での煮沸と KOH エッチングに よる洗浄後は p-v で~0.6 nm の表面粗さを持 つ(図 4b)。

これらの基板上に dioleoylphosphatidyl choline (DOPC)-SPLB をベシクル融合法によ って作製した。DOPC のベシクル(=リポソー ム)を調製する際にあらかじめ蛍光標識脂質 (lissamine rhodamine B-dipalmitoylphosphatidyl ethanolamine: Rb-DPPE)を 10⁻⁹~10⁻⁸の割合で 混入し、SPLB 形成に用いた。ベシクル融合 法では用いる脂質と基板の種類によって SPLB 形成のための条件が変化するが、ベシ クル径、浸漬時間・温度をパラメーターとし て TiO₂(100)および SiO₂/Si 表面上に DOPC -SPLB を作製した。欠陥の無い均一な SPLB が再現性良く形成されることを原子間力顕 微鏡(AFM)および落射蛍光顕微鏡によって確 認した。また、コレステロールと PC を主成 分として含む SPLB を SiO₂/Si およびマイカ表 面上にベシクル融合法によって作製するた めの条件を求めた。この系ではベシクル径と 浸漬条件の他に水溶液中の Ca²⁺濃度が SPLB 形成を決める要因であった。

図 5. 斜入射照明法で観察した SiO₂/Si 上 DOPC-SPLB 中の蛍光標識脂質(Rb-DPPE)の 一分子蛍光像および拡散軌跡: (a) 均一照明 (67 fps)、(b) 集光照明(2011 fps)。

4. 研究成果

(1)斜入射照明による基板材料に制約されない 蛍光一分子追跡

図4のステップ&テラス TiO₂(100)表面およ びSiO₂/Si表面上に形成したDOPC-SPLB中で の Rb-DPPE 分子拡散挙動を、斜入射照明 (図 2b)による SMT でその場観察した。図5に均 一照明(図 3a) および集光照明(図 3b) によ って得られた SiO₂/Si 上 DOPC-SPLB 中での一 分子蛍光像とその拡散軌跡を示す。不透明な シリコン基板上でも SMT 計測を行うことが できた。均一照明系では 25×25 µm²の領域を 最大 67 fps で観察することにより、Rb-DPPE が数秒の間に 5-10 µm の距離を拡散する様子 を観察することができた(図 5a)。集光照明 による高速観察では 4.8×2.5 µm²の領域を最 大2010 fpsで観察することに成功した(図5b)。 このフレームレートは 100 nm オーダーの領 域での分子拡散挙動を追跡するのに十分な 値である。このようにミリ秒・100 nm~秒・ µmの幅広い時間・空間スケールでの SMT 計 測を、基板材料の透明度に依らずに行うこと のできる実験装置を構築することができた。

過去の報告では1フレーム当たり µs オー ダーでの高速観察も行われているが、プロー ブとして金属コロイドなどを用いて散乱光 を観察する必要がある。基板表面からの反射 光や散乱光が背景にのる条件では観察でき ないため、やはり基板はガラスや石英に限定 される。透明度や屈折率の異なるさまざまな 材料を基板として用いる目的には蛍光プロ ーブを用いる本研究の手法が優れており、蛍 光色素をプローブとして 2000 fps の時間分解 能は現時点での世界最高水準である。また、 本研究計画の申請時には、高速観察に必要な S/N 比を得るためには蛍光プローブとして量 子ドットを使用する必要があると考えてい た。しかし、超高感度 CCD カメラを備えた ことで、蛍光色素でも十分な励起光強度を得 ることができた。蛍光退色の面でも色素を用 いたことによる問題は無く、統計処理に足る 数の 100 フレーム以上の長さの軌跡を取得 することができた。

(2)基板表面ナノ構造が誘起する異常拡散現象

異なる表面ナノ構造を持つ2種類の酸化物 基板(図4)上のDOPC-SPLBでのRb-DPPE の拡散挙動を、図2の斜入射照明SMTを用 いてミリ秒・100 nm~秒・ μ m オーダーの範 囲に渡って20°Cでその場観察した。それぞ れの基板上で観察の時間分解能を図5のよう な拡散軌跡を100分子以上のRb-DPPEについ て取得した。それぞれの軌跡について平均二 乗変位(MSD)を計算した後、全分子の平均 MSDを求めた(図6)。二次元の拡散におけ る MSD と時間(t)の関係式は拡散係数をDと して、

 $MSD = 4D_0 t^{\alpha} = 4D(t)t, \qquad (1)$ $D(t) = D_0 t^{1-\alpha} (\alpha \le 1)$

と表される。ここで α は異常拡散指数である。 完全なランダム拡散(ブラウン運動)の場合 は $\alpha=1$ であり、MSD は時間に対して 1 次に 増加する。 $\alpha<1$ となる場合を異常拡散と呼び、 このときは拡散係数が時間・空間に依存して 減少する。

均一照明による SMT で観察した秒・μmの オーダーにおける分子拡散では、TiO₂(100),

図 6. ステップ&テラス TiO₂(100)および SiO₂/Si 基板上 DOPC-SPLB 中での Rb-DPPE 分子拡散の平均二乗変位の時間発展。(a, b) 均一照明により観察。(c, d) 集光照明による 高速観察。-: それぞれの Rb-DPPE 分子の MSD。 o, o: 全分子の平均 MSD。

図 7. (a) スケック& ケクス HO₂(100), (b) SiO₂/Si 表面上 DOPC-SPLB 中での Rb-DPPE の拡散係数(D)および平均拡散距離(√MSD) の時間依存性。

SiO₂/Si 表面上のいずれも MSD は時間に対し て 1 次に増加しており(図 6a, b)、この範囲 では脂質分子はランダム拡散していること が分かる。式(1)を用いて a=1 としてフィッテ ングして得られた D は TiO₂(100)および SiO₂/Si 上でそれぞれ 3.02 μ m²/s, 2.53 μ m²/s であり、過去の報告と比較して SPLB の D 値として妥当な値である。

−方、集光照明による高速 SMT で観察 したミリ秒・100 nm オーダーにおける分子 拡散では MSD-時間プロットは線形になら ず、α<1の異常拡散が起きていることが分か る (図 6c, d)。MSD-t プロットを $t= 1\Delta t - n\Delta t$ (Δt =1/f)の範囲で< r^2 >=4D(t)tに直線フィッティ ングすることで、拡散係数 D(t)の時間依存性 を求めた(図 7a, b)。TiO₂(100)表面上では、t=2 ms, *d*=160 nm では *D*= 4.70 µm²/s の拡散係数 が t=10 ms、d=390 nm の時間・空間スケール まで拡散するうちに 3.3 µm²/s まで減少し、 t=20 ms、d=710 nm 以上のスケールではほぼ 一定の値(3.1 µm²/s)をとった(図 7a)。SiO₂/Si 表面上ではこのような急峻な D(t)の減少は観 察されなかった(図 7b)。これは SiO2 表面上の 凹凸のピッチが~60 nm と小さく、その内部で の分子拡散を捉えるには 2000 fps の時間分解 能でも不十分なためと考えられる。TiO₂(100) 上での D(t)の挙動はホップ拡散に特徴的なも のであり、TiO2(100)表面上の DOPC-SPLB に おいて 150 nm 程度の大きさのコンパートメ ントが形成されていることが示唆される。こ の大きさは原子ステップのピットが並んだ TiO₂(100)表面上でのステップ間距離と一致 することから、基板原子ステップに沿った SPLB の歪みが拡散のエネルギー障壁として 働き異常拡散を誘起していると考えられる。 過去の報告において、SPLB 中ではリポソー ムなどのフリースタンディングな脂質二重 膜と比較してDが1/2~1/3に減少することが 知られていた。これまでは基板-脂質膜間のど のような相互作用が膜の流動性を減少させ ているのかは明らかになっていなかったが、 本研究の結果は基板表面のサブナノメート ルの構造が誘起する脂質膜中の歪みが分子 拡散の障壁として働いていることを示唆し ている。また、本研究で表面原子ステップが 形成したコンパートメントのサイズは細胞 膜中でピケットタンパク質が形成する物に 近い大きさを持っており、人工細胞膜モデル としての SPLB の機能向上に重要な意味を持 \mathcal{O}_{\circ}

(3) 今後の課題と展望

脂質膜の非対称物性を調べるために、図 6 の各 Rb-DPPE分子の軌跡(一)に対してフィッ ティングを行って各分子の D を求めたが、そ の分布は単分散で二重膜の上側と下側の単 分子層膜の間に拡散係数の明確な違いを見 出すことはできなかった。PC の親水頭部は

中性で基板表面と特異的な相互作用を持た ないことが原因であろう。今後は糖脂質など バルキーな親水頭部を持つ脂質を用いたり、 基板表面への化学修飾などと組み合わせる ことによって人為的に SPLB 中に非対称物性 を生じさせることにも取り組みたい。また、 多成分 SPLB の SMT 計測の端緒として行った DOPC+コレステロール-SPLB 中での SMT 計 測の結果では SiO₂/Si 上では D=1.6 µm²/s で、 単成分 DOPC-SPLB (図 7b) と比較すると時 間依存性が小さく、またフリースタンディン グな脂質二重膜の D により近い値が得られ た。基板表面が誘起する SPLB の異常拡散に おいては SPLB の脂質組成もパラメーターの 1 つとなりうることを示唆している。今後は 糖脂質などを含め多成分 SPLB 上での分子挙 動とその時間・空間依存性を詳細に調べ、さ らには SPLB 上でのペプチド・タンパク質反 応活性との関連を明らかにしていきたい。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計7件)

①**手老 龍吾**, "酸化物基板表面上の支持平面 脂質二重膜内でのドメイン形成と分子拡散 挙動のその場観察", 膜, **36**(1), 16-23 (2011) (査読有り).

② Z. Shang, Y. Mao, <u>**R. Tero**</u>, X. Liu, T. Hoshino, M. Tanaka and T. Urisu, "Clustering effects of GM1 and formation mechanisms of interdigitated liquid disordered domains in GM1/SM/CHOL-supported planar bilayers on mica surfaces", *Chem. Phys. Lett.*, **497** (1-3), 108-114 (2010) (査読有り).

③ Y. Mao, Z. Shang, Y. Imai, T. Hoshino, <u>**R**.</u> <u>**Tero**</u>, M. Tanaka, N. Yamamoto, K. Yanagisawa and T. Urisu, "Surface-induced phase separation of a sphingomyelin/cholesterol/ganglioside GM1-planar bilayer on mica surfaces and microdomain molecular conformation that accelerates A\beta oligomerization", *Biochim. Biophys. Acta*, **1798** (6), 1090-1099 (2010) (査読 有り).

④ <u>手老 龍吾</u>, "酸化物表面上での脂質二重膜の形状変化・相分離への表面力と光照射の影響",機能材料, **30**(7), 63-68 (2010) (査読無し).

⑤ <u>R. Tero</u>, T. Ujihara and T. Urisu, "Shape transformation of adsorbed vesicles on oxide surfaces: Effect of substrate material and photo-irradiation", *Trans. Mater. Res. Soc. Jpn.*, **34** (2), 183-188 (2009) (査読有り).

6 Y. Yamauchi, T. Ujihara, R. Tero and Y.

Takeda, "Effects of applied voltage on the size of phase-separated domains in DMPS-DOPC lipid binary bilayers supported on SiO₂/Si substrates", *Trans. Mater. Res. Soc. Jpn.*, **34** (2), 217-220 (2009) (査読有り).

⑦ T. Ujihara, S. Suzuki, Y. Yamauchi, <u>**R. Tero**</u> and Y. Takeda, "Local condensation of artificial raft domains under light irradiation in supported lipid bilayer of PSM-DOPC- cholesterol system", *Trans. Mater. Res. Soc. Jpn.*, **34** (2), 179-182 (2009) (査読有り).

〔学会発表〕(計 14 件) <招待講演>

1). <u>**手老龍吾</u>**, "酸化物基板表面上の平面支持 脂質二重膜内での分子拡散挙動のその場観 察", *膜シンポジウム 2010*, 2010 年 11 月 19 日, 京都・京都大学</u>

2). <u>手老龍吾</u>, "支持脂質二重膜内での微小構造の形成と分子拡散挙動への影響", *第 48 回日本生物物理学会年会*, 2010年10月20日, 仙台・東北大学

3). <u>手老龍吾</u>, "支持脂質二重膜の相分離と一 分子観察", 第 31 回日本バイオマテリアル学 会大会, 2009 年 11 月 16 日, 京都・京都府民 総合交流プラザ

4). <u>手老龍吾</u>, "平面脂質二重膜の構造・物性 への表面力場および光照射の影響(依頼講 演)", 第62 回コロイドおよび界面化学討論会, 2009 年 9 月 18 日, 岡山・岡山理科大学 <一般講演>

手老龍吾, 佐崎 元, 宇治原 徹, 宇理須 恒 雄, "一分子蛍光追跡法による脂質二重膜中 の幅広い時間・空間スケールでの分子拡散挙 動のその場観察", *日本化学会第 90 春季年会*, 2010 年 3 月 27 日, 大阪・近畿大学(優秀講 演賞(学術)受賞) 他、国際会議 4 件、国内学会 5 件

[その他]

ホームページ等

http://www.tut.ac.jp/teach/main.php?mode=detail&article=684

6.研究組織
(1)研究代表者
手老 龍吾 (TERO RYUGO)
豊橋技術科学大学・エレクトロニクス先端
融合研究所・特任助教
研究者番号: 40390679