科学研究費補助金研究成果報告書

平成 24 年 6 月 22 日現在

機関番号:82108 研究種目:若手研究(B) 研究期間:2009 ~ 2010 課題番号:21710111 研究課題名(和文) 磁性架橋単分子が誘起する近藤共鳴状態のSTM装置による検出と制御

研究課題名(英文) Detection and control of the Kondo resonance state induced by a magnetic single-molecular bridge by using STM

研究代表者

長岡 克己 (NAGAOKA KATSUMI) 独立行政法人物質・材料研究機構・国際ナノアーキテクトニクス研究拠点・MANA研究者 研究者番号: 80370302

研究成果の概要(和文):

分子素子の開発には機能分子の位置の制御技術が必要となる。本研究では、任意の位置で STM 探針に適当な電圧を印加することよって、真空蒸着した銅フタロシアニン(CuPc)分子のナノ ドメインを凝集・拡散させる技術を開発した。そして、分子軌道計算を行い、その動作機構の 解明を行った。また、同種の磁性分子について分子軌道計算を行い、近藤共鳴を利用した高い 電気伝導度が期待される分子素子の提案を行った。

研究成果の概要(英文):

For developments of a molecular device, position-controlling technique of its functional molecules is necessary. In this research, we have found that, by controlling bias voltage of STM probe, gathering/diffusing Copper-Phthalocyanine (CuPc) molecules adsorbed on the Bi surface is manipulated at any point on the surface. In order to investigate the working mechanism, the molecular-orbital calculation has been performed based on the DFT method. By extending the calculation to similar magnetic molecules, a highly electric-conductive molecular device utilizing Kondo resonance state is proposed.

交伯	讨ど	央定	額
~ • •			

			(金額単位:円)
	直接経費	間接経費	合 計
2009 年度	1,000,000	300, 000	1, 300, 000
2010 年度	2, 500, 000	750,000	3, 250, 000
年度			
年度			
年度			
総計	3, 500, 000	1,050,000	4, 550, 000

研究分野: 複合新領域

科研費の分科・細目:ナノ・マイクロ科学・ナノ材料・ナノバイオサイエンス キーワード:1分子科学

1. 研究開始当初の背景

近年、単分子エレクトロニクスが注目され ているが、現在、その電気特性は分子固有の 電子状態よりも、むしろ、電極-分子間の接 合界面電子状態(以降、電極接合状態)が支 配的な状況にある。今後、分子の多彩な性質 を活用した分子デバイスの実現には、電極接 合部の電気伝導機構を原子スケールの空間 分解能で理解することが重要である。また、 多くの分子・電極接合には硫黄原子を含む分 子を Au 表面にアンカーする技術を用いてい る。これは硫黄原子と Au 表面間の強い化学 結合を利用したものであるが、電気的な接続 は必ずしもよくない。メゾからナノ領域の固 定電極に分子を接合する場合も、ほとんど Au-S系の結合が利用されており、これに置き 換わる電極基板とアンカー原子・官能基間の 接合系の系統的な探索と構築が切望されて いる。

2. 研究の目的

本研究の目的は、分子素子の構築のために 必要な、分子の凝集・拡散を制御できる方法 を開発することであり、そして、その動作メ カニズムを解明する。さらに、この方法を活 用できる分子を用いて、高い電気伝導度を有 する分子素子のアイデアを提案する。

3. 研究の方法

試料として、Si(111)表面上に成長 させたBi(001)表面を用い、その上に、 CuPc分子(図1)を低被覆率で真空蒸着 した。

図1 CuPc分子

主な測定は、Omicron 社製低温STM装置 を用いて超高真空中、試料温度4.2Kで行っ た。具体的には、分子の空間的な分布・配置 の情報を得るSTM像と分子の電子状態に関す る情報を示すSTMスペクトル測定を行った。

分子操作は、まず、STM 探針を観察領域内 の任意の場所に移動させ、そこで適当な極 性・大きさの電圧をパルス状に印加すること により実現された。

分子軌道計算は、孤立分子を想定し、分子動力学計算により構造最適化を行った後、 DFT 法に基づき、基底関数セットとして 6-316*、交換・相関関数として B3LYP を用い て行った。

4. 研究成果

図2は、Bi(001)表面に吸着させた

C u P c の典型的な S T M像を示す。4.2K で はテラス上に吸着した孤立分子を観察でき たが、77K では観察できなかった。これは、 サイト移動のためのポテンシャル障壁高さ が、この雰囲気温度に対応するエネルギー、 数m e Vオーダー(>kB T)に相当するため と考えられる。個々のC u P c 分子の S T M 像は中心が明るくない四つ葉型を示してお り、過去の観察報告、理論計算と一致する。 S T M像のバイアス依存性については、試料 バイアスが+0.5V 以上では分子が回転してい る可能性あると考えられるが、ゼロバイアス を含む+0.5V~-2.0V の範囲で特に像に変化 はなかった。

図2 CuPc/Bi (001)表面のSTM像

図3は、STM探針を用いて行った一連の 分子操作過程を示すものである。まず、ST M像観察を行い、そして、図中の①の位置に 探針を移動させ、任意のパルスバイアスを探 針に印加し、STM像観察を再取得するとい うことを繰り返している。ここで、(a)→(b) →(c)→(d)では-2.5Vの探針バイアスが印加 され、(d)→(e)→(f)、(g)→(h)では-1.5V、 (f)→(g)では+1.5V が、それぞれ印加されて いる。

図3 STM探針による一連の分子操作過程 (90 nm x 90 nm)

その結果、探針バイアスが負/試料バイア

スが正のとき、探針直下に CuPc 分子が島状 に凝集し、探針バイアスが正/試料バイアス が負のとき、探針直下に島状に凝集していた CuPc 分子が拡散することが見出された。また、 パルス時間を長くすることにより、最大ドメ インサイズは100nmにまで達したが、ス テップを乗り超える分子移動は観察されな かった。

これまでの、同様のSTM探針が誘起する 電界による原子・分子操作については、2n m程度の狭い範囲で凝集・拡散が制御できた 報告[1]、もしくは、凝集のみ100nmオ ーダーの範囲で制御できた報告[2]しかなく、 本研究において100nmオーダーの広範 囲で凝集・拡散の両方が制御できた点は有用 である。

[1] T. Nakayama et al., Microelectronic Engineering 32 (1996), 191.

[2] L. J. Whitman et al., Science 251(1991), 1206.

また、+0.75V以上の試料バイアスで 観測した前後で、孤立分子の吸着状態を比較 すると、±30°回転している分子が観察さ れた。これは、探針による電界によって、分 子の表面平行方向への移動だけでなく、分子 の回転も誘起されたことを示唆している。し かしながら、ダイマー分子に関して、+0. 75V以上の試料バイアスで観測した前後 で分子の吸着状態を比較しても、回転してい る分子は確認できなかった。これは、孤立分 子と比較して、立体障害のため回転自由度が 小さいこと、そして、ダイマー間に作用する 水素結合(後述)が要因と思われる。

さらに、この分子操作の現象理解をするために、吸着分子の電子状態の測定を行った。 得られたSTMスペクトルを図4に示す。 +0.5Vの位置に特徴的なピークが観察された。

図4 CuPcのSTMスペクトル

以上の実験結果から、まず、本研究で見出 したSTM探針が誘起する分子操作に関し て、その機構解明のために孤立CuPcに関 する分子軌道計算を行った。図5に、得ら れたHOMO軌道、LUMO軌道の空間分布 を示す。

図5(b) CuPc分子のLUMO軌道

CuPc内のCu原子は2価で存在してい るため、価電子状態は3d⁹4s⁰であり、総 電子数が奇数となる。よって、孤立系におい ては、HOMO軌道は、電子1個で占有され ているため、SOMO軌道となる。このSO MO軌道から予想されるSTM像は、中心が 明るくない四つ葉型であり、実験結果とよく 一致している。

図6は同分子の電子状態密度であり、真空 準位からのエネルギー(eV)に対して、各分 子軌道(黒線)と全軌道の合計(青線)を示 している。ただし、ここでは各軌道はエネル ギー幅、500meVのローレンツ分布曲線で近似 している。

図6 CuPc分子の電子状態密度

この理論曲線と実験で得られたSTMス ペクトル(図4)の比較より、スペクトル中、 +0.5V に現れた特徴的なピークが、SOMO 軌道に起因したものであると同定した。この ことから、分子のSOMO軌道から下地に電 荷移動が起き、結果、Bi表面上ではCuP c 分子は正電荷を帯びていることが示唆さ れる。実際、一般に、CuPcはp型有機半 導体材料として、広く用いられ、特に、有機 ELディスプレイや有機薄膜太陽電池の構 成材料として用いられていることからも、C u P c 分子から下地へ電荷移動が起きたこ とは十分にもっともらしい結果と思われる。 そして、「探針バイアスが負/試料バイアス が正のとき、探針直下に CuPc 分子が島状に 凝集し、探針バイアスが正/試料バイアスが 負のとき、探針直下に島状に凝集していた CuPc 分子が拡散する|現象は、正電荷を帯び た分子に対し、STM探針が誘起する電界に よって引力や斥力が生じたためであると理 解できる。

また、この分子軌道計算を基に、この分子 周辺の静電ポテンシャルマップを計算する と図7を得る。

図7 CuPc分子の静電ポテンシャルマップ

窒素原子の外側に静電ポテンシャルが最 低の領域があり、これは不対電子対が存在す ることによる。そして、この不対電子対によ る水素結合が、分子ダイマーを構築し、また、 そのダイマーが分子歯車のように回転しな い要因となっていると理解できる。

さらに、この分子軌道計算を同種の分子に まで拡張し、分子の磁性についても検討した。 電子スピンに起因する磁性を有するために は、電子数が奇数であることが望ましい。前 述のCuPcは奇数個の電子を有するため、 孤立系では磁性を示すことが期待されるが、 Bi表面では、電荷移動のため、磁性が消失、 もしくは、弱められている。そこで、表面吸 着時に電荷移動が起きても、磁性が保持され るような分子を検討し、CoPcを提案した。 図8にCoPcのHOMO軌道を示す。

図8 CoPc分子のHOMO軌道

C o P c 内のC o の原子価は+2なので、 価電子状態は 3d⁷ 4s⁰ となり、総電子数が 奇数となるので、HOMO軌道はSOMO軌 道となる。そして、この軌道はC o の d_{x2}軌 道に由来するため、d_{y2}軌道に由来する分子 軌道と縮退している。よって、分子から下地 へ電荷移動が起きても、フントの法則により、 d_{x2}、d_{y2}軌道に1個ずつ平行スピンをもっ た電子が存在するので、磁性は失われないこ とが予想される。そして、この磁性分子が誘 起する近藤共鳴状態を用いた分子素子を用 いれば、高い電気伝導度をもつ分子素子が提 案できる。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計 1件)

① A. Illie, J. S. Bendall, <u>K. Nagaoka</u>, S. Egger, T. Nakayama, S. Crampin, Encapsulated Inorganic Nanostructures: A Route to Sizable Modulated, Noncovalent, On-Tube Potentials in Carbon Nanotubes, ACS Nano 査読あり 5, 2559-2569 (2011)

〔学会発表〕(計 1件)
 ①柳沼晋、<u>長岡克己</u>、中山知信、
 STM 探針による分子ナノドメインの操作、
 ナノ学会第7回大会 2009/05/09 東京大
 学本郷キャンパス

6.研究組織
(1)研究代表者
長岡 克己 (NAGAOKA KATSUMI)
物質・材料研究機構・国際ナノアーキテクト研究拠点 MANA研究者
研究者番号:80370302
(2)研究分担者 なし
(3)連携研究者 なし