科学研究費補助金研究成果報告書

平成23年 5月19日現在

機関番号:11301				
研究種目:若手研究	(B)			
研究期間:2009~2010				
課題番号:21740228				
研究課題名(和文)	電極表面における水素発生ダイナミクスの第一原理シミュレーション			
研究課題名(英文)	First-principles simulations of hydrogen-evolution reaction on electrode surfaces			
研究代表者				
濱田 幾太郎(Hamada Ikutaro)				
東北大学・原子分子材料科学高等研究機構・助教				
研究者番号:	80419465			

研究成果の概要(和文):

白金電極上で起こる水素発生反応の微視的機構を解明する目的で、水/白金(111)界面における水素会合反応の第一原理分子動力学シミュレーションを実行した。計算により得られた活性化エネルギーからは、白金(111)上では Heyrovsky 反応に比べて Tafel 反応が支配的である可能性が示唆された。しかしながら、反応機構をより詳細に理解するためには、さらに効率的な手法を用い、反応障壁の電極電圧、並びに水素被覆率依存性についてより現実的なシミュレーションを数多く行う必要がある。

研究成果の概要(英文):

Ab initio molecular dynamics simulations on hydrogen association reactions at water /Pt(111) interface have been performed to elucidate the microscopic mechanism of the hydrogen evolution reaction (HER) on the platinum electrode. Calculated activation barriers for Heyrovsky and Tafel steps in HER suggest that the latter is favored on Pt(111). However, further development of efficient methods and their application to the simulations on potential and hydrogen coverage dependences are required for a complete understanding of the reaction mechanism of HER. $\phi d h c$

			(金額単位:円)
	直接経費	間接経費	合 計
21 年度	2, 000, 000	600, 000	2, 600, 000
22 年度	1, 500, 000	450, 000	1, 950, 000
年度			
年度			
年度			
総計	3, 500, 000	1, 050, 000	4, 550, 000

研究分野:数物系科学 研究費の分科・細目:物理学・物性 I キーワード:表面・界面

1. 研究開始当初の背景

水素発生反応は電気化学において最も基礎 的な反応として知られている。またこの反応 は近年エネルギー問題に関連して注目を集め ている水素燃料電池とも密接に関連しており 工業的応用の観点からも重要な反応である。 しかしながら、その反応の見た目の単純らふ。 関わらず、反応の微視的機構はいまだ明らか にされていない。今後、より高効率の水素燃 料電池触媒を開発するためには、水素発生に おける触媒金属や溶媒分子である水の役割を 明らかにし、反応の微視的機構を解明するこ とが重要である。

3.研究の目的

本研究では最も基礎的な触媒である白金表 面上での水素発生反応の素過程を第一原理分 子動力学シミュレーションで明らかにするこ とを目的とする。さらに活性化障壁を求める ことにより、反応ダイナミクスを反応速度論 へ展開させることも本研究の重要な課題である。

3.研究の方法

水素発生反応のダイナミクスを議論する ためには反応経路の決定が必要不可欠であ る。本研究期間を通じて白金(111)電極上 の水素発生反応における Heyrovsky、並びに Tafel 過程について、ブルームーンアンサン ブル法を用いた第一原理分子動力学シミュ レーションを実行し、これらの反応経路の探 索を行い、さらに化学反応の活性障壁の見積 もりを行った。

ブルームーンアンサンブル法

活性化障壁を含む化学反応は稀に起こる現象(rare event)である。そのような化学反応は、仮ご反応経路 が分かっていたとしても、現在の計算機資源を用いて実 行可能な時間の範囲内(数十ps~数百ps)での分子動 力学シミュレーションで起こすことは、ほぼ不可能であ る。そのような現象のシミュレーションを可能こし、自 由エネルギーの計算を可能にするために開発された方 法の一つが、以下に示すブルームーン・アンサンブル法では反 応座標、例えば、原子座標や原子結合間の角 度など、反応経路に対応した原子座標拘束条 件を Lagrangeの未定常数 λを導入すること によって課し、分子動力学シミュレーション を実行し、反応の自由エネルギープロファイ ルを求める法法である。

反応座標を原子位置 $\{\mathbf{r}_i\}$ の関数 $\xi(\{\mathbf{r}_i\})$ と すると、反応座標 $\xi_0 \ge \xi_1$ の間の自由エネルギ ーFの差は以下で与えられる。

$$F(\xi_1) - F(\xi_0) = -\int_{\xi_0}^{\xi_1} d\xi' f_{\xi'}$$

 $f_{\xi'}$ は以下で示す平均の力 (mean force) である。

$$f_{\xi'} = \frac{\left\langle Z^{-1/2} [\lambda - kTG] \right\rangle}{\left\langle Z^{-1/2} \right\rangle}$$

$$Z = \sum_{i} \frac{1}{m_i} \left(\frac{\partial \xi}{\partial \mathbf{r}_i} \right)^2$$

$$G = \frac{1}{Z^2} \sum_{ij} \frac{1}{m_i m_j} \frac{\partial \xi}{\partial r_j} \frac{\partial^2 \xi}{\partial r_j \partial r_j} \frac{\partial \xi}{\partial r_j}$$

ここでkはボルツマン定数、Tは系の温度、 m_i は粒子iの質量であり、ブラケットは時間 平均を示す。拘束条件が原子iとjの間の距 離の場合($\xi = |\mathbf{r}_i - \mathbf{r}_j|$)、上式は

$$Z = \frac{1}{m_i} + \frac{1}{m_j}$$
$$G = 0$$
$$f_{\xi'} = \langle \lambda \rangle_{\xi'}$$

となる。また拘束条件が原子iとjの距離とjとkの距離の差の場合

$$Z = \frac{1}{m_i} + \frac{1}{m_k} + \frac{2}{m_j} \left[1 - \frac{(r_i - r_j)(r_k - r_j)}{|r_i - r_j||r_k - r_j|} \right]$$

$$G = 0$$

$$f_{\xi'} = \frac{\left\langle Z^{-1/2} \lambda \right\rangle}{\left\langle Z^{-1/2} \right\rangle}$$

となることが簡単に示せる。

実際の計算においては、反応座標 ξ を仮定 し、反応座標を構成する原子座標について rattle 法あるいは shake 法を用いて、 原子間距離、原子間距離の差、あるい は原子間の角度について拘束条件を課して 動力学シミュレーションを実行する。系を平 衡化した後に原子座標と Lagrange の未定乗 数のサンプリングを長時間に渡って行い、ブ ラケットで示される時間平均を行う。これを いくつもの ξ に値について行い、求まった平 均力 fee ξ について積分することで自由エ ネルギープロファイルが求まる。求まったエ ネルギーのプロファイルから反応の活性化 障壁を求めることが可能になる。

この方法では対象となる反応座標につい て拘束条件を課す必要があるため、反応経路 を仮定する必要がある。そのため、あらかじ め反応経路が明らかになっていない化学反 応については、現実的な活性化障壁の見積も りを行うために、異なる幾つかの反応経路に ついてシミュレーションを行い反応機構の 考察を注意深く行うべきである。しかしなが ら、今考えているような固液界面における複 雑な反応のシミュレーションは極めて複雑 で、しかもシミュレーションの実行には非常 に時間がかかるため、本研究では極めて少数 の反応座標しか考慮することができなかっ た注目するプロトンと吸着水素との距離、プ ロトン-酸素間距離とプロトン-吸着水素距 離の差)。今後、メタダイナミクス法やマル チカノニカル法などといったより効率的な 自由エネルギーサンプリング手法の開発を 行っていく必要があると考えられる。

Herovsky、Tafel 過程による水素発生反応 の反応経路を同定するために、様々な反応経 路を調べ、その中で最もらしいもの(シミュ レーションが比較的容易なもの)を探し出し ブルームーンアンサンブル法により反応経 路の詳細を調べた。

本研究では水/白金界面における水素発 生反応における、プロトン吸着反応(Volmer 過程)に続いて起こる水素分子の会合脱離過 程

 $H_3O^+ + H^* + e^- \rightarrow H_2O + H_2$

(Heyrovsky 過程)

$$H^* + H^* \rightarrow H_{2}$$

(Tafel 過程)

を考えている。ここで H^{*}は吸着水素を示す。 真空中での水素分子の解離吸着のポテン シャルエネルギー面の類推から、自由エネル ギーのエネルギーランドスケープは図1に示 すようなものになっていると考えられる。こ れらの反応を起こすために、以下の拘束条件 を考慮した。Heyrovsky 過程については、(i) プロトン中にヒドロニウムイオン (H_2O^+) として存在するプロトンと酸素の間の距離 (d_{OH})と、注目するプロトンと吸着水素 (H^{*}) の間の距離 $(d_{\rm HH})$ の差 $(d_{\rm HH} - d_{\rm OH})$ と、(ii) *d*_{HH}にのみ拘束条件を考慮した。拘 束条件(i)を考慮した理由は以下である。 d_{нн} にのみ拘束条件を課すと、反応経路に沿った 正確な自由エネルギーを求めるために非常 に細かく反応座標を刻む必要があるためで ある(図2(a))。一方、d_{HH}-d_{OH}に拘束条 件を課せば反応経路に沿った細かいメッシ ュを刻む必要はなく、等間隔に拘束条件を課 して効率的にシミュレーションが実行でき ると期待されるからである(図2(b))。一方 Tafel 過程では溶液中のプロトンは反応に関 与しないため、r_{HH}についての拘束条件を課 してシミュレーションをのみ実行した。

図1:水素分子発生/解離の自由エネルギー ランドスケープの模式図と最低エネルギー 経路(赤線)。インセットに白金原子上の水 素とヒドロニウムイオンを示す。グレイ、赤、 白の球はそれぞれ白金、酸素、水素原子を示

図 2: エネルギーランドスケープの模式図と (a)水素-水素距離、(b)水素-水素距離と水素 -酸素距離の差に沿った反応経路(点線)

計算結果

(1) Heyrovsky 過程 ① $d_{\text{HH}} - d_{\text{OH}}$ に拘束条件をかけた場合のシ ミュレーション

d_{HH}-d_{OH}について 0.500Åから-0.375Å の範囲で9つの値を考慮した。大きい値が反 応物(H^{*}+H⁺)に、小さい値が生成物(H₂)に対 応する。これらの拘束条件のセットについて 分子動力学シミュレーションを実行した。図 3 に Lagrange 未定乗数 λ の時間変化を示す。 $r_{\rm HH} - r_{\rm OH} \leq -0.0937$ Åにおいて、シミュレー vnn von z voo λが急激に減少しているこ とが分かる。これは水素分子の生成ではなく プロトンの吸着反応に対応するλの変化で あることが分かった。図4にプロトン吸着過 程のスナップショットを示す。この拘束条件 について、いくつもの初期構造を用意してシ ミュレーションを行ったが、いずれも水素分 子発生ではなくプロトン吸着が起こってお り、水素-水素距離と酸素-水素距離の差は水 素分子を発生させるための適切な反応座標 ではないことが分かった。また、この結果か ら、プロトン吸着は活性化障壁が低く容易に 起こる反応であり、水素発生反応の律速段階 は Volmer 過程でなく、それに続いて起こる Heyrovsky あるいは Tafel 過程であることが 示唆される。

Heyrovsky 過程の分子動力学シミュレーショ ンにおける Lagrange 未定乗数λの時間変化。

図 4: $d_{\text{HH}} - d_{\text{OH}}$ に拘束条件をかけた分子動 力学シミュレーション中のプロトン吸着反 応過程のスナップショット。

② $d_{\rm HH}$ に拘束条件をかけた場合のシミュレーション

次に d_{HH} を2.00Åから0.75Åまで徐々に 変えながら、先と同様のブルームーン分子動 力学シミュレーションを実行した。Lagrange 未定乗数の時間変化を図5に示す。 d_{HH} が大 きい場合、 λ はシミュレーションの間一定の 値の周辺で揺らいでいる。ところが

 d_{HH} =0.775, 0.750Åにおいて、シミュレーション開始後 0.5ps 付近で λ が大きく減少していることが分かる。この大きな λ の変化は水素分子の発生に対応している。水素発生反応のスナップショットを図 6 に示す。各原子間距離でのシミュレーションにおけるLagrange 未定乗数を最後の 1ps で平均し求めた mean force とその積分によって得られる

自由エネルギーのプロファイルを求めると (図 6)、遷移状態は $H_3O^++H^*$ となっている ことが分かった。また得られた反応の活性化 障壁は約 2eV と極めて高いものとなった。現 在のシミュレーションでは電圧を印可して おらず、この状況ではヒドロニウムイオンが 電極と接した水の層ではなく第二層目に存 在する確率が高い。そして、実際に起こって いる反応は $H_3O+H^* \rightarrow H_2O+H_2$ というよりは $H_3O^++H_2O+H^*+e^{-}(baoいは H_5O_2^++H^*+e^{-}) \rightarrow$ $H_3O^++OH^-+H2 \rightarrow H_2O+H_2O+H_2$ という逐次反 応が起こっていると考えられる。つまり、約 2eV という非常に大きな活性化障壁は水分子 中の 0H ボンドの解離に要したエネルギーと 捉えるべきであろう。

また、このシミュレーションで興味深いの は、水素分子が発生した後、即ち、プロトン が溶液中から無くなった直後に吸着水素が 脱離してヒドロニウムイオンが生成するこ とである。現実の系でこのようなことが起き ているのかどうか、現段階ではまだ分からな いが、今後ますます詳細な解析を進めること により界面での現象の深い理解が得られる ものと期待される。

図 5: *d*_{HH に}拘束条件をかけた Heyrovsky 過 程の分子動力学シミュレーションにおける Lagrange 未定乗数λの時間変化。

図 6: d_{HH} に拘束条件をかけた Heyrovsky 過 程の分子動力学シミュレーションにおける 平均力と自由エネルギーの d_{HH} 依存性。平均 力の算出にはシミュレーションの最後の 1ps のデータを用いた。

(2) Tafel 過程

次に、電子移動を含まない Tafel 過程を考え る。この反応にはプロトンが関与しないため、 反応座標としては近接の吸着水素間の距離 のみを考慮した。図7には $r_{\rm HH}$ =0.8125 のブ ルームーン分子動力学シミュレーションの スナップショットを示す。シミュレーション を開始してまもなく、同一白金原子の上に二 つの水素が吸着し、その後に水素分子として 脱離する様子が見てとれる。わずかに大きい 値である $r_{\rm HH}$ =0.875 において、反応種である 水素原子が脱離することなく同一白金原子 上を揺らいでいることも分かったため、 Tafel 反応の中間状態としては白金トップサ イト上のH*+H*であることが示唆される。 Heyrovsky 過程ど同様に各 rHH で拘束条件付 き分子動力学シミュレーションを実行し、最 後の1psでデータを平均し、平均力および自 由エネルギーを求めたところ(図8)、シミ ュレーションから示唆されたように白金ト ップサイト上のH^{*}+H^{*}が水素発生反応の中間 体であることが分かり、活性化障壁は約 0.8eV となった。これは Skulasson らが nudged elastic band method を用いて求めた値に近い ものであることも分かった。

図7: $d_{\rm HH}$ に拘束条件をかけた分子動力学シ ミュレーションにおける Heyrovsky 過程によ る水素発生反応のスナップショット。(a) $d_{\rm HI}$ =2.0Å(b) $d_{\rm HI}$ =0.8125Å(c) $d_{\rm HI}$ =0.775Å (d) $d_{\rm HI}$ =0.750Å反応の中間体は(b)である。

図8: $d_{\rm HH}$ に拘束条件をかけた Tafel 過程の 分子動力学シミュレーションにおける平均 力と自由エネルギーの $d_{\rm HH}$ 依存性。平均力の 算出にはシミュレーションの最後の 1ps のデ ータを用いた。

今後の課題

本研究で初めて固液界面における水素分子 発生反応とその活性化障壁を見積もること に成功した。残念ながら、求まった活性化障 壁は実験値に比べて非常に大きいものとなってしまった。しかしながら、現在のシミュレーションにはまだ電圧印可の効果が含まれていない。特にHeyrovsky 過程については、 電圧印可によりヒドロニウムイオンが界面に近づき、その結果、反応の活性化障壁が著しく現象することが期待される。また Tafel反応については電圧印可(電場)の効果は小さいことが期待されるが、吸着水素の安定性は被覆率依存性を検証することが重要であろう。上述のシミュレーションを継続していくことで水素発生反応機構の解明が大きく進展すると期待される。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計3件)

1. <u>I. Hamada</u> and Y. Morikawa, "A density-functional theory study of water on clean and hydrogen preadsorbed Rh(111) surfaces", J. Chem. Phys. **134**, 154701-1-154701-8 (2011). (査読有)

2. <u>Hamada</u>, K. Lee, and Y. Morikawa, "Interaction of water with a metal surface: Importance of van der Waals forces", Phys. Rev. B **81**, 115452-1-115452-6 (2010). (査読有)

3. <u>I. Hamada</u>, "A van der Waals density functional study of ice", J. Chem. Phys. **133**, 214503-1-214503-4 (2010). (査読有)

〔学会発表〕(計4件)

1. <u>濱田幾太郎</u>、"ファン・デル・ワールス 密度汎関数を用いた氷 Ih の研究"、日本物 理学会 2010 年秋季大会(2010 年 9 月 24 日) 大阪府立大学

2. <u>濱田幾太郎</u>、Kyuho Lee、森川良忠、

"Interaction of water with a metal surface: Importance of van der Waals forces", Psi-k 2010 Conference (2010 年 9月13日、Berlin)

3. <u>濱田幾太郎</u>、"Interaction of water with a metal surface: Importance of van der Waals forces", International Conference on Core Research and Engineering Science of Advanced Materials (2010 年 6 月 4 日、 大阪)

4. <u>濱田幾太郎</u>、森川良忠、 "First-principles Study of Clean and Hydrogen Preadsorbed Rh(111) Surfaces", ISSP11 (2009年10月13日、千葉県生命の森 リゾート)

5. 濱田幾太郎、森川良忠、"金属上への水 吸着に対するファン・デル・ワールス力の影 響"、日本物理学会 2009 年秋季大会 (2009 年9月25日、熊本大学) 〔図書〕(計0件) 〔産業財産権〕 ○出願状況(計0件) 名称: 発明者: 権利者: 種類: 番号: 出願年月日: 国内外の別: ○取得状況(計0件 名称: 発明者: 権利者: 種類: 番号: 取得年月日: 国内外の別: [その他] ホームページ等 6. 研究組織 (1)研究代表者 濱田 幾太郎 (Hamada Ikutaro) 東北大学·原子分子材料科学高等研究機 構・助教 研究者番号:80419465