# 科学研究費補助金研究成果報告書

平成 23年 4月 27日現在

| 機関番号:22604<br>研究種目:若手研究<br>研究期間:2009~20<br>課題番号:21740262 | (B)<br>10                                                                                 |  |  |  |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------|--|--|--|
| 研究課題名(和文)                                                | 核磁気共鳴と誘電率測定によるカーボンナノチューブ内に吸蔵した水の<br>構造と挙動の研究                                              |  |  |  |
| 研究課題名(英文)                                                | Nuclear magnetic resonance and dielectric study of confined water inside carbon nanotubes |  |  |  |
| 研究代表者                                                    |                                                                                           |  |  |  |
| 松田 和之(MATSUDA KAZUYUKI)                                  |                                                                                           |  |  |  |
| 首都大学東京・理工学研究科・助教<br>研究者番号:60347268                       |                                                                                           |  |  |  |

研究成果の概要(和文):ナノスケールの空間に閉じ込められた水はバルク状態とは異なる 特異な振る舞いをすることが知られている。この研究では、単層カーボンナノチューブの 内部空間に閉じ込められた水の構造と挙動を調べ、水の液体・固体相転移温度のチューブ直 径依存性を明らかにし、チューブ内部の水のグローバル相図を得た。また、チューブ内部 の水の低温固体相であるアイスナノチューブの誘電特性を明らかにした。

研究成果の概要(英文): Water confined on the nanometer scale exhibits unusual behavior that cannot be observed in the bulk. In this research, we have studied structure and dynamics of confined water inside single-walled carbon nanotubes (SWCNTs). We have determined experimentally global phase diagram of water confined inside SWCNTs and revealed ferroelectric properties of a new form of ice "ice nanotube" inside SWCNTs.

交付決定額

|         |             |             | (金額単位:円)    |
|---------|-------------|-------------|-------------|
|         | 直接経費        | 間接経費        | 合 計         |
| 2009 年度 | 2, 500, 000 | 750, 000    | 3, 250, 000 |
| 2010 年度 | 1, 000, 000 | 300, 000    | 1, 300, 000 |
| 年度      |             |             |             |
| 年度      |             |             |             |
| 年度      |             |             |             |
| 総計      | 3, 500, 000 | 1, 050, 000 | 4, 550, 000 |

研究分野:物性

科研費の分科・細目:物理学・物性 II

キーワード:カーボンナノチューブ、分子性固体、ナノ空間、分子挙動、相転移

### 1. 研究開始当初の背景

近年、カーボンナノチューブが有する1次元 的なナノメートルあるいはサブナノメートル サイズの空間に分子や原子を吸着させること により、物性を制御したり新奇機能を発現さ せようとする研究が、実験・理論両側面から 精力的に行われている。ナノ空間内部の物質 は、バルク領域の物質とは異なる性質を持つ ことが期待され、物理学の対象として興味深 い。しかし、このようなナノ空間内部の物質 系を調べる有効な実験的手法は限られており、 分子動力学に基づく計算機シミュレーション による理論的な研究が先行してきた。

このような状況のなか、我々は単層カーボ ンナノチューブ(SWCNT)内部に吸蔵された 水が示す特異な挙動を実験的に明らかにした。 特に、計算機シミュレーションにより予測さ れていた、SWCNT内部での水の多員環氷 "アイスナノチューブ"への液体・固体相転移 を、実験的に観測することに成功した。現在 までに直径 1.1~1.4 nm (空洞直径 0.8~1.1 nm ) の範囲で平均直径の異なるSWCNT試料に吸蔵された水について系統的な実験を行い、そのSWCNT直径に応じて5員環から8員環までのアイスナノチューブが形成されることを確認している。さらにアイスナノチューブの融点は空洞径が小さくなるほど上昇することを見出した。

シリカガラスなどを用いたこれまでの研究 では、細孔内の水の相転移挙動が調べられ、 空洞直径 1.3 nm 以上では水の融点は空洞直 径が小さくなるほど降下することが報告され ている。すなわちアイスナノチューブの融点 はこれまでに報告されていた細孔内の水の融 点降下とは逆の傾向を示し、バルク領域の氷 からの融点降下では単純には説明できない。 この空洞直径に依存した水の相転移挙動の大 きな変化はバルク領域から原子・分子スケー ルのサブナノメートル領域へのクロスオーバ ーが起きているためであると考えられる。

このサブナノメートル領域で見つかったア イスナノチューブの特異な融点の直径依存性 の起源を明らかにするためには、より大きな 直径のSWCNTを用い空洞内の水の構造と相 転移挙動を調べる必要がある。

# 2. 研究の目的

上記のように、我々はこれまでに直径 1.1 ~1.4 nm の比較的細い SWCNT 内部の水が バルクとは異なる挙動を示すことを明らか にしてきた。最近の SWCNT 作製技術の著し い進展により、現在では直径 2.0 nm を超え る太い SWCNT 良質試料を用いた実験が可 能となっている。そこで、太い SWCNT(直 径 1.4~2.4 nm) 内部に吸蔵した水の構造と 相転移挙動を NMR 測定により調べる。さら に、太い SWCNT で得られた知見は、既に得 られている細い SWCNT 内部の水の結果と 合わせ、空洞が原子・分子スケールのサブナ ノメートル領域からバルク領域に移行する ときに空洞内部の水の相転移挙動がどのよ うに変化するのかを解明する。また、低温固 体相のアイスナノチューブの誘電特性を明 らかにする。

## 3.研究の方法

飽和水蒸気中で SWCNT へ水を吸着させ、x 線回折実験と核磁気共鳴(NMR)実験により SWCNT 内部空間への水吸着を確認する。水吸 着 SWCNT の NMR 実験を行い、得られた核スピ ン-格子緩和時間(T<sub>1</sub>)核スピン-スピン緩和

時間(T<sub>a</sub>)、NMR線形の測定結果より、水の分 子ダイナミクスに関する知見を得る。ここで NMR は SWCNT に吸着した軽水と重水の<sup>1</sup>H 核、 <sup>2</sup>H核について測定を行う。<sup>2</sup>H核 NMR からは水 分子回転運動の状態とその運動の相関時間 に関する知見を得ることができるのに対し、 <sup>1</sup>H核NMRからは、回転運動に加え並進運動の 知見を得ることができる。また、x 線回折実 験により SWCNT 内部の水の構造を調べる。こ れらの測定に加え、SWCNT 内部の水の古典分 子動力学に基づく計算機シミュレーション を行う。これらの実験により得られた水の挙 動と構造に関する情報から、SWCNT 内部の水 の液体-固体相転移挙動を調べる。上記の実 験を平均直径の異なる SWCNT (1.4 nm ~2.4 nm) について行い、SWCNT 内部の水の相転移 挙動がチューブ直径によりどのように変化 するのかを明らかにする。さらに、以前の研 究で明らかになっている、直径 1.1 nm~1.4 nmの比較的細いSWCNTにて低温で形成される アイスナノチューブの誘電特性を計算機シ ミュレーションにより予測するとともに、誘 電率測定によりその検証を行う。

### 4. 研究成果

平均直径 1.5 nm < D < 2.4 nm を有する比 較的直径の大きな SWCNT の内部に吸着した水 の挙動を調べ、既に明らかになっていた平均 直径 1.1 nm < D < 1.5 nm の比較的直径の小さ な SWCNT では見られなかった、新しい水の相 転移が、直径の大きな SWCNT で起こることを 見いだした。直径の小さな SWCNT (1.1 nm < D



図 1) SWCNT 内部の水のグローバ ル相図

<1.5 nm) では、水はチューブ内部にとどま ったまま低温で液体-固体相転移を起こし、 アイスナノチューブが形成される。一方、直 径の大きな SWCNT では、内部の水が低温でチ ューブから放出される "wet-dry 転移"を起 こすことを、x 線回折実験により見出した。 さらに、この相転移にともない水分子の回転 運動と並進運動が凍結することを<sup>1</sup>H,<sup>2</sup>H 核の NMR により確認した。この wet-dry 相転移温 度を NMR と x 線回折実験により決定し、その SWCNT 直径依存性を調べた結果、相転移温度 は直径が大きくなるとわずかに上昇するこ とを明らかにした。この振る舞いは、直径の 小さな SWCNT で観測されている、アイスナノ チューブが形成される液体-固体相転移温度 が、直径が大きいほど低下するのとは対照的 である。この直径依存性は従来から知られて いるシリカガラスなどで調べられたバルク 領域の空洞内の水の相転移温度と同じ振る 舞いである。このことは、wet-dry 転移が水 の SWCNT 内部での液体-固体相転移と関係し ていることを示唆している。本研究により得 られた SWCNT 内部の水のグローバル相図を図 1に示す。また、7員環と8員環のアイスナ ノチューブでは、SWCNT への水吸着量を増や すと、チューブのエッジ効果により、アイス ナノチューブ内部に水分子の1次元鎖が形成 されることが、x線回折実験と計算機シミュ レーションにより示された。



図 2) SWCNT 内部に形成された 5 員環アイスナノチューブの構造

また、5,7員環の奇数環アイスナノチューブ(図2)は強誘電体の性質を有し、6,8員 環の偶数員環アイスナノチューブは反誘電 体の性質を有することが、計算機シミュレー ションにより示されたが、現在のところ誘電 率測定により検証するには至っていない。さ らに、アイスナノチューブは水分子の1次元 鎖から構成されているが、チューブ軸方向へ 電場を印加することにより水1次元鎖が1本 単位で揃い、その分極過程はステップ状の変 化を示すことがシミュレーションにより示 された。この結果は印加電場により分極を制



図 3)5 員環アイスナノチューブの強誘電 体ヒステリシス(チューブ軸方向に電場を 印加)

御できることを示しており、アイスナノチ ューブの誘電特性は極微小サイズの強誘電 体メモリへの応用が期待される。

5.主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計5件)

1) H. Kyakuno, <u>K. Matsuda</u>, H. Yahiro, T. Fukuoka, Y. Miyata, K. Yanagi, Y. Maniwa, H. Kataura, T. Saito, M. Yumura, and S. Iijima, Global Phase Diagram of Water Confined on the Nanometer Scale, Journal of the Physical Society of Japan, (査読 有) 79 (2010) 083802-1--083802-4.

2) K. Hanami, T. Umesaki, <u>K. Matsuda</u>, Y. Miyata, H. Kataura, Y. Okabe, and Y. Maniwa, One-Dimensional Oxygen and Helical Oxygen Nanotubes inside Carbon Nanotubes, Journal of the Physical Society of Japan, (査読有) 79 (2010) 023601-1--023601-4.

3) K. Yanagi, H. Udoguchi, S. Sagitani, Y. Oshima, T. Takenobu, H. kataura, T. Ishida, <u>K. Matsuda</u>, and Y. Maniwa, ransport Mechanisms in Metallic and Semiconducting Single-Wall Carbon Nanotube Networks, ACS Nano, (査読有) 4 (2010) 4027-4032.

4) F. Mikami, <u>K. Matsuda</u>, H. Kataura, and Y. Maniwa, Dielectric Properties of Water inside Single-Walled Carbon Nanotubes, ACS Nano,(査読有) 3 (2009) 1279-1287. 5) <u>K. Matsuda</u>, Y. Konaka, Y. Maniwa, S. Matsuishi, and H. Hosono, Electronic state and cage distortion in the room-temperature stable electride  $[Ca_{24}A1_{28}O_{64}]^{4+}(0^{2-})_{2-x}(e^{-})_{2x}$  as probed by 27A1 NMR, Phys. Rev. (査読有) B 80, 245103 (2009) 245103-1--245103-5.

〔学会発表〕(計 12 件)

1) 客野遥、<u>松田和之</u>、八尋瞳、伊波悠、福 岡智子、宮田耕充、柳和宏、真庭豊、高井和 之、 榎敏明、片浦弘道、斎藤毅、湯村守雄、 飯島澄男, "有限長SWCNTに内包された水の 構造:SWCNTエッジ効果",第40回フラーレ ン・ナノチューブ総合シンポジウム,(愛知 県名古屋市,名城大学)2011年3月9日

2) <u>松田和之</u>,福岡智子,佐藤康史,客野遥, 柳和宏,真庭豊,西原洋知,京谷隆, "ゼオ ライト鋳型カーボンに吸着した水の挙動", 第 40 回フラーレン・ナノチューブ総合シン ポジウム,(愛知県名古屋市,名城大学)2011 年 3 月 9 日

3) 鷺谷智,米森啓太,柿原隆介,羽渕隆文, 平山大裕,林博和,姜健,岩澤英明,島田賢 也,生天目博文,谷口雅樹,石井廣義,門脇 広明,<u>松田和之</u>,柳和宏,真庭豊, "金属型 単層カーボンナノチューブから作製した二 層カーボンナノチューブの光電子分光",第 40回フラーレン・ナノチューブ総合シンポジ ウム,(愛知県名古屋市,名城大学)2011年 3月9日

4) 客野遥, <u>松田和之</u>, 八尋瞳, 福岡智子, 宮田耕充, 柳和弘, 真庭豊, 片浦弘道, 斎藤 毅, 湯村守雄, 飯島澄男, **"SWNT**に内包さ れた水のグローバル相図", 第 39 回フラーレ ン・ナノチューブ総合シンポジウム, (京都 府京都市, 京都大学) 2010 年 9 月 7 日

5) <u>松田和之</u>, 福岡智子, 鷺谷智, 鵜戸口浩 樹, 柳和宏, 真庭豊, 片浦弘道, "金属型単 層カーボンナノチューブの 13C-NMR", 第 39 回フラーレン・ナノチューブ総合シンポジ ウム, (京都府京都市, 京都大学) 2010 年 9 月 7 日

6)花見圭一,梅崎智之,<u>松田和之</u>,柳和宏, 門脇広明,岡部豊,真庭豊,宮田耕充,片浦 弘道,″酸素を内包したカーボンナノチュー ブの構造と磁性",日本物理学会 第65回年 次大会(岡山県岡山市,岡山大学),2010年 3月20日

7)守屋理恵子, 鈴木拓也, 柳和宏, 内藤泰

ヘ、片浦弘道, 松田和之, 真庭豊、 "金属型・
半導体型単層カーボンナノチューブ薄膜の
光電気化学測定",日本物理学会 第65回年
次大会(岡山県岡山市,岡山大学),2010年
3月23日

8) 鵜戸口浩樹,柳和宏,鷺谷智,大島勇吾, 竹延大志,片浦弘道,<u>松田和之</u>,真庭豊, " 金属型・半導体型単層カーボンナノチューブ バッキーペーパーの電気伝導特性",第38回 フラーレン・ナノチューブ総合シンポジウム, (愛知県名古屋市,名城大学)2010年3月3 日

9) 八尋瞳,客野遥,福岡智子,<u>松田和之</u>, 真庭豊,片浦弘道,斎藤毅,大嶋哲,湯村守 雄,飯島澄男, "太い単層カーボンナノチュ ーブに内包された水分子の相転移",日本物 理学会 2009 年秋季大会(熊本県熊本市,熊 本大学),2009 年 9 月 26 日

10)花見圭一,土居直弘,梅崎智之,<u>松田</u> <u>和之</u>,柳和宏,門脇広明,真庭豊,片浦弘道, 『酸素を内包したカーボンナノチューブの 構造と物性",日本物理学会 2009 年秋季大 会(熊本県熊本市,熊本大学),2009 年 9 月 26 日

11)<u>松田和之</u>,福岡智子,鵜戸口浩樹,鷺 谷智,柳和宏,真庭豊,片浦弘道, "金属型 単層カーボンナノチューブの13C-NMR",日本 物理学会 2009 年秋季大会(熊本県熊本市, 熊本大学),2009 年 9月26日

12) <u>松田和之</u>,八尋瞳,客野遥,福岡智子, 柳和弘,真庭豊,斎藤毅,大嶋哲,湯村守雄, 飯島澄男,片浦弘道,宮田耕充 "太いSWCNT 内の水の相転移",第37回フラーレン・ナノ チューブ総合シンポジウム,(茨城県つくば 市,つくば国際会議場),2009年9月1日

〔その他〕 ホームページ等 http://www.comp.tmu.ac.jp/nanotube/

 6.研究組織
 (1)研究代表者 松田 和之(MATSUDA KAZUYUKI)
 首都大学東京・理工学研究科・助教 研究者番号:60347268