科学研究費補助金研究成果報告書

平成23年4月12日現在

機関番号: 1 1 3 0 1 研究種目: 若手研究(B) 研究期間: 2009~2010 課題番号: 21760514 研究課題名(和文) Co₃X型 GCP 相と Co₂X型ラーベス相の金属間化合物相安定性に関する研究 研究課題名(英文) Phase Stability of Intermetallic Compounds of Co₃X Type GCP Phase and Co₂X Type Laves Phase 研究代表者 大森 俊洋 (OMORI TOSHIHIRO) 東北大学・大学院工学研究科・助教 研究者番号: 60451530

研究成果の概要(和文): 本研究では、Co-W系、Co-Mo系合金を中心にした Co基2元系、3元 系の相平衡を実験的に決定し、CALPHAD 法による熱力学解析を行った。特に、Co₃X や Co₂X で表 わされる金属間化合物に着目した相安定性を評価した。L1₂構造、DO₁₉構造、ラーベス相などが 多く出現し、それぞれの安定性を評価することができた。これにより、耐熱材料、耐摩耗材料、 医療材料等の Co 合金における材料設計の指針として有用な知見を得ることができた。

研究成果の概要(英文): Phase equilibria have been experimentally determined mainly in Co-W and Co-Mo base ternary systems, and assessed by using the computational thermodynamics called CALPHAD technique. The phase stability of the L1₂, D0₁₉ and Laves phases has particularly been investigated. These results are useful for alloy design of Co-based alloys such as heat resistant materials, wear resistant materials and medical materials.

交付決定額

(金額単位:円)

		(亚城中区・11)
直接経費	間接経費	合 計
1,900,000	570,000	2, 470, 000
1,600,000	480,000	2, 080, 000
3, 500, 000	1, 050, 000	4, 550, 000
	直接経費 1,900,000 1,600,000 3,500,000	直接経費間接経費1,900,000570,0001,600,000480,000

研究分野:工学

科研費の分科・細目:材料工学・金属物性 キーワード:金属間化合物、GCP相、ラーベス相、相安定性、相平衡、状態図、Co合金

1. 研究開始当初の背景

Co 合金は、医療材料、耐摩耗材料、耐熱材 料、磁性材料などに利用されており、金属間 化合物は材料の強化や機能にとって重要で ある。特に、最近、Co₃(A1, W)で表わされる L1₂構造の金属間化合物がCo-A1-W3元系にお いて見出され、新しい耐熱材料として注目を 浴びている。Ni-X2元系にはL1₂構造、D0₂₂ 構造、D0₂₄構造、D0₁₉構造等のNi₃Xで表わさ れる多く最密充填(Geometrically Close Packing: GCP) 構造が存在する。一方、Co-X 2 元系合金にも金属間化合物が多く出現し、 GCP 相としては、DO₁₉構造の Co₃Mo、Co₃W、L1₂ 構造の Co₃Ti が存在するが、Ni 系に比較し、 明確に少ない。しかし、最近、L1₂構造の Co₃A1 (準安定相) や Co₃(A1, W)、Co₃(Ge, W)3 元化 合物を相次いで見出しており、他の Co-X 系 においても3元系の組み合わせを調査するこ とで、L1₂構造をはじめとする Co₃X で表され る GCP 構造の金属間化合物の出現が期待でき る。また、Co₂X で表わされるラーベス相との 相安定性評価も興味深い。しかし、Co 合金の 状態図研究は十分に進んでいないのが現状 であった。

2. 研究の目的

本研究は、Coと3B族(A1、Ga)、4B族(Si、Ge、Sn)、4A族(Zr、Hf)、5A族(V,Nb,Ta)、 6A族(Cr,Mo,W)の組み合わせの3元系合金 における Co₃X型 GCP 相及び Co₂X で表される ラーベス相を中心とした金属間化合物の相 安定性の実験とそれに基づく解析を行うこ とを目的とした。特に、Co-Mo、Co-W系合金 は実用 Co合金としても重要であり、本研究 では、これら合金系を中心とした相平衡実験 及び実験状態図に基づく CALHPAD 法による熱 力学解析を行った。さらに機械的性質の評価 を行った。

3.研究の方法

種々組成を有する Co-Ta 2 元系及び Co-W-Ta、Co-Mo-Ta、Co-W-Ti、Co-Mo-Ti、 Co-Nb-Ta 各 3 元系合金を高周波誘導溶解、ア ーク溶解またはレビテーション溶解により 作製し、900~1300℃の各温度において平衡 化熱処理を行った。拡散を促進するために、 必要に応じて圧延を行ってから熱処理を行 った。相平衡は、EPMA、FE-EPMA を用いた組 成分析と X線回折、TEM による構造解析によ り決定した。また、示差走査熱量計(DSC)に よる熱分析も行った。さらに、CALPHAD 法に よる熱力学解析を行った。各相の熱力学モデ ルは後述する。また、種々熱処理を施した合 金のビッカース硬度を測定した。

4. 研究成果

(1)状態図の実験的決定と熱力学解析
Co-Ta2元系は準安定γ'相が存在し、安定
相として複数のラーベス相が出現する。しか

図 1 Co-10W-5Ta 合金の 1300℃熱処理材の 組織(反射電子像)

し、従来の状態図は不確かな点が多く残され ているため、相平衡を拡散対法、合金法、熱 分析(DSC)により実験的に再決定した。従 来の相境界線を修正し、Co₇Ta₂、C36、C15、 C14 ラーベス相を含む正確な状態図を再決定 できた。実験的に決定した Co-Ta2 元系の相 平衡に基づき、CALPHAD 法による熱力学解析 を行った。実験状態図において、金属間化合 物の相境界が過去の報告から修正されてお り、これらを反映させた解析を行って熱力学 パラメータを決定した。また、準安定 γ,相 については第一原理計算により求めた生成 エネルギーを用いて熱力学解析を行った。

さらに、3 元系合金について相平衡を決定 した。特に、Co-W-Ta、Co-Mo-Ta、Co-W-Ti、 Co-Mo-Ti、Co-Nb-Taの各3元系については詳 細な相平衡を実験的に決定した。

1300℃で平衡熱処理を施した Co-10W-5Ta 合金の組織を図 1 に示した。γ相(A1 構造) と C36 相の 2 相組織が観察されている。種々 組成を有する Co-W-Ta 系合金も同様に熱処理 を行い、組成分析を行った結果、900~1300℃ における等温断面図を作成できた。また、同

図 2 Co-W-Ta における (a)1300 ℃、 (b)1000℃の実験及び計算状態図

様にして Co-Mo-Ta 系合金の等温断面図も実 験的に決定できた。Co-W-Ta、Co-Mo-Ta 系は 類似した状態図の形をしており、高温では γ 相、 μ 相、C36 相、C15 相が平衡し、低温に なるにつれ χ 相 (DO₁₉)、Co₇Ta₂相などが平衡 相として出現していた。C15 は W をわずかし か固溶しないのに対し、C36 は W を多量に固 溶することがわかった。また、これら Co-Ta、 Co-W-Ta、Co-Mo-Ta 系では γ '相が観察され たが、いずれも準安定相であった。

さらに、これらの熱力学解析を行った。図 2 に Co-W-Ta 系の実験及び計算状態図を示し た。熱力学解析においては、液相、 γ 相、 ϵ 相、 α 相の Gibbs エネルギー記述には正則溶 体モデルを、 μ 相は (Co, X)₇X₂ (Co, X)₄ で表わ される 3 つの副格子、 χ 相は Co₃ (Co, X) で表 わされる 2 つの副格子、CoTa₂相は (Co, X) (Co, X)₂ で表わされる 2 つの副格子で 記述した。Co₇Ta₂は化学量論化合物とみなし、 CopXq で表わされるモデルを用いた。図 2 の ように、1300℃では γ 相、C36 相、C15 相、 μ 相、1000℃ではさらに μ 相、Co₇Ta₂相を計 算により再現することができた。

同様にして、Co-W-Ti、Co-Mo-Ti 各 3 元系 状態図を実験的に決定し、CALPHAD 法による 熱力学解析を行った。図 3 は 1200°Cで 24 時 間熱処理した Co-14W-8Ti 合金の反射電子像 である。 γ 相、 $_{\chi}$ 相、 $_{\mu}$ 相が存在している。 Co-Ti 2 元系にはL1₂構造の $_{\gamma}$ '相が存在し、 Co-W 及び Co-Mo 各 2 元系にはD0₁₉構造の $_{\chi}$ 相 が存在する。両相は Co₃X で表わされる GCP 相 であり、最密面の積層が異なるのみで類似し た構造であることから、Co-W-Ti、Co-Mo-Ti 系における状態図は金属化合物相の相安定 性の観点から興味深い。Co-Ti に存在する γ '相には W、Mo は数%程度しか固溶しない のに対し、Co-W、Co-Mo に存在する $_{\chi}$ 相には Ti が多量に固溶し、両者は Co-Ti 側で 2 相平

図3 1200℃で熱処理したCo-14W-8Ti合金の 反射電子像

衡することがわかった。Ti は χ 相よりも γ , 相に多く分配する傾向があった。図 4 に Co-W-Ti 3 元系の実験及び計算状態図を示し た。熱力学モデルは前述のとおりで、B2、L1₂ 相は 2 つの副格子を仮定して S-CEF という手 法により Gibbs エネルギーを記述した。計算 により、実験状態図をほぼ正確に再現するこ とができた。Co-Mo-Ti に関しても、Co-W-Ti に比較的類似した結果が得られた。すなわち、 χ 相には多量の Ti が固溶し、Co-Ti 側まで広 く存在するのに対し、一方で γ , 相に固溶す る Mo は数 at.%以下であった。また、 μ 相、 C15 相、C36 相の相平衡も決定することがで きた。

図 4 Co-W-Ti 3 元系における 1000℃の等温断 面図(実験値と計算)

また、Co-Nb-Ta 3 元系の相平衡を決定した。 Nb と Ta は同族元素であり、Co-Nb、Co-Ta 各 2 元系は Co₇M₂、C36、C15、C14、 μ 相が存在 する、類似した形の状態図をとる。したがっ て、Co-Nb-Ta 3 元系においても、例えば 1300℃では C15 及び μ 相が Co-Nb 側から Co-Ta 側まで連続して存在していた。

```
(2) 金属間化合物の相安定性評価
```

Co-Ti, Co-Ta, Co-Al, Co-Mo, Co-Wの各2 元系と、Co-Al-W, Co-W-Ge, Co-W-Ga, Co-W-Ti, Co-W-Ta, Co-W-Nb, Co-W-Si, Co-W-Sn, Co-Mo-Ti, Co-Mo-Taの各3元系にお ける金属間化合物相の相安定性の調査を行っ た。L1₂構造はCo-Ti、Co-Al-W、Co-W-Ge系に 見られ、準安定ではCo-Ta系とCo-Al 2元系に 見られる。Co-Ta系では組み合わせる元素によ り γ 相の安定性が変化した。D0₁₉構造は Co-MoとCo-Wに現れる。800℃における安定性 の結果を図5にまとめた。

図5 Co-Ta系合金の800℃における準安定 y ['] 相の存在時間のまとめ

以上の知見を、Ni系における金属間化合物 に関する報告と合わせて、L1₂相、D0₁₉相、D0₂₂ 相、Cu₃Ti型構造とe/a、メンデレーエフ数の 関係を考察した。これらのパラメータにより Ni基、Co基の全ての化合物の相安定性が整理 できる訳ではないが、化合物探索の指標とし て用いることができ、最も簡便な手法として はe/aとのある程度の相間が見られた。

(3) 機械的性質

最後に、様々な合金系のCo基合金を熱処理 し、ビッカース硬度計を用いて室温における 硬度測定を行った。熱処理条件を変化させて 硬さを測定した結果、特にCo-W-Ta、Co-Mo-Ta 系において600Hv近い高い硬度を示すことが わかった。Co-5W-2.5Ta合金における時効条件 と硬度の関係を調査した結果を図6に示した。 800℃時効において、最も硬度が高く、高い硬 度を得るには1時間以上の時効時間が必要で ある。最高高度は約600Hvであった。

5. 主な発表論文等 (研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計3件)

- K. Niitsu、<u>T. Omori</u>、M. Nagasako、K. Oikawa、R. Kainuma and K. Ishida、" Phase Transformations in the B2 Phase of Co-rich Co-Al Binary Alloys"査読 有、Journal of Alloys and Compounds、 509 巻、2011 年、2698-2702
- H. Chinen、<u>T. Omori</u>、K. Oikawa、I. Ohnuma、 R. Kainuma and K. Ishida、 "Phase Stability of the L1₂ Compound and Microstructural Changes in Co-(W or Mo)-Ta Ternary Alloys" 査読有、 Materials Research Society Symposium Proceedings、1123 巻、2010 年、U06-U08
- H. Chinen、<u>T. Omori</u>、K. Oikawa、I. Ohnuma、R. Kainuma and K. Ishida、 "Phase Equilibria and Ternary Intermetallic Compound with Ll₂ Structure in Co-W-Ga System" 査読有、 Journal of Phase Equilibria and Diffusion、30 巻、2009 年、587-594

〔学会発表〕(計3件)

- 品川一矢、高久佳和、<u>大森俊洋</u>、及川勝 成、大沼郁雄、石田清仁、貝沼亮介、Co-A1, Co-W 及び Co-A1-W 系合金の相平衡の 実験的決定と熱力学解析、2010年日本金 属学会秋期大会、2010年9月25日、北 海道
- <u>T. Omori</u>, J. Sato, K. Oikawa, I. Ohnuma, R. Kainuma and K. Ishida, Partition of Alloying Elements in Co-Al-W-Base Systems, PRICM7, 2010年8月5日、ケ アンズ、オーストラリア
- <u>T. Omori</u>, J. Sato, K. Oikawa, I. Ohnuma, R. Kainuma and K. Ishida, Effect of Alloying Elements on Phase Equilibria in New Co-based Superalloy, CIMTEC2010, 2010 年 6 月 15 日、モンデカティーニテ ルメ、イタリア
- 6. 研究組織
- (1)研究代表者
 - 大森 俊洋 (OMORI TOSHIHIRO) 東北大学・大学院工学研究科・助教

研究者番号:60451530

(2)研究分担者 なし

(3)連携研究者 なし