科学研究費補助金研究成果報告書

平成24年6月7日現在

機関番号:82110
研究種目:研究活動スタート支援
研究期間:2009~2010
課題番号:21860090
研究課題名(和文)飛行時間法中性子回折を用いた組織超微細化中の集合組織変化の検討
研究課題名(英文) Crystallographic Texture Evolution During Microstructure Refinement Processes Studied by Time-Of-Flight Neutron Diffraction
研究代表者
徐 平光 (XU PINGGUANG)
独立行政法人日本原子力研究開発機構・量子ビーム応用研究部門・研究員
研究者畨号:80554667

研究成果の概要(和文): 国内の角度分散法中性子回折装置と海外の飛行時間法中性子回折装 置を用い、フェライト変態に及ぼす二相域加工の影響を検討した。低温大歪み加工中の遅い動 的フェライト変態は動的フェライト再結晶によって生じることを解明した。また、冷間圧縮し た低合金鋼の加熱および冷却中のその場集合組織を測定し、集合組織記憶現象は変態中の相歪 みに起因して生じることを明らかにした。

研究成果の概要(英文): The effect of dual phase region deformation on the dynamic ferrite transformation was investigated by quantitatively measuring the bulk textures of *in situ* hot-compressed samples through using a domestic angle dispersive neutron diffractometer and an oversea time-of-flight neutron diffractometer, and the relative slow dynamic ferrite transformation in lower temperature dual phase region was found due to the occurrence of dynamic ferrite recrystallization during heterogeneous plastic deformation. The texture memory phenomenon during the step-by-step heating and cooling of a cold compressed low alloy steel sample is related to the phase strains during phase transformation rather than the deformation stored energy obtained in the initial sample.

交付決定額

			(金額単位:円)
	直接経費	間接経費	合 計
2009年度	1,070,000	321,000	1, 391, 000
2010年度	980, 000	294,000	1, 274, 000
年度			
年度			
年度			
総計	2,050,000	615,000	2, 665, 000

研究分野:工学

科研費の分科・細目:材料工学・材料加工・処理 キーワード:組織微細化、量子ビーム、集合組織

1. 研究開始当初の背景

(1) 近年、優れた強度・靭性バランスと良好 なリサイクル性を有する超微細結晶鋼は重 要な研究テーマの一つになっている。動的フ ェライト相変態と動的フェライト再結晶は 組織微細化の主な方法であることが認めら れているが、大歪熱間加工中に動的フェライ ト変態とその結晶方位変化を直接観察した 例はない。中性子回折は材料組織形成の研究 に極めて有力な実験手法であり,特に飛行時 間法中性子回折は析出,回復・再結晶,相変 態等による組織形成の解析に使われ始めて いるが、バルク集合組織の結果は報告されて いなかった。

(2) 低合金鋼のα→γ→α拡散変態中、加熱前

のフェライト集合組織と冷却終了後のフェ ライト集合組織の間によく観察された集合 組織記憶現象はバリアント選択則を用いて 検討されて来た。しかし、高温拡散相変態の 中間過程のその場観察例はなかったため、バ リアント選択メカニズムはまだ不明であっ た。

2. 研究の目的

(1) フェライト変態に及ぼす二相域加工の 影響を検討し、低温大変形加工中の動的フェ ライト変態が高温大変形加工より遅くなる 原因を解明する。

(2) 冷間圧縮した低合金鋼の加熱と冷却中 の集合組織記憶現象が生じる原因を解明す る。

3. 研究の方法

(1) 国内の角度分散法中性子回折装置と海 外の飛行時間法中性子回折装置を用い、既に 動的フェライト変態した試料のバルク集合 組織を室温で測定した。続いて、フェライト 変態に及ぼす二相域加工の影響を検討し、低 温大歪み加工中の遅い動的フェライト変態 と動的フェライト再結晶の関係を検討した。

(2) 海外の飛行時間法中性子回折装置を用いて、冷間圧縮した低合金マルテンサイト鋼を段階的な加熱と冷却中のオーステナイト変態、フェライト変態中の変態集合組織を測定し、その場集合組織の変化を検討した。

4. 研究成果

(1) 海外の中性子回折その場熱間圧縮実験より、25%温間圧縮中圧縮軸に対し{111}と {001}方位を有する結晶が発達し(図 1(b):前者、0.11→1.02;後者、0.85→1.70)、フェライト量は25%から54%までに増加したことが分かった。続いて 50%まで圧縮すると、{111}と{001}方位に有する結晶の量は増えないが(図 1(c):前者、1.02→1.05、後者、1.70→1.60)、フェライト相の量は54%から77%まで増加したことが分かった。動的フェライト相変態は加工しながら継続することを明確にしたが、結晶方位ほぼ変わらない理由はさらなる検討が必要である。

(2) 整備した国内の角度分散法中性子回折 装置と、海外で既に応用されている飛行時間 法中性子回折装置を用い、その場中性子回折 熱間圧縮実験が終了した試料のバルク集合 組織を測定した。両者の結果はよく一致し、 結晶方位分布関数(ODF)から国内の中性子回 折装置を用いた集合組織測定及び解析技術 は信頼性があることを確認した。また、複相 鉄鋼材料やマグネシウム合金を利用して国 内の角度分散法中性子回折集合組織評価技 術を最適化した。

図 1 913K 熱間加工中に得たその場中性子 回折プロファイルを基づいたフェライト相 の逆極点図:(a)加工前;(b)25%圧縮;(5)50% 圧縮。

(3) 従来の熱間加工装置を用いて同じ材質 の低合金鋼円柱試料に913Kで30%、50%圧 縮、993Kで50%圧縮、873Kで50%圧縮変形 を施した。国内の角度分散法中性子回折装置 を用いて四つの試料のバルク集合組織を測 定した。図2より、動的相変態(993K、50% 圧縮)と動的再結晶(873K、50%圧縮)が生じ た試料の結晶方位分布関数は著しい相違点 があることが判明した。

図 2 室温で測定したフェライト相結晶方位 分布関数: (a) 993K、50%圧縮、動的相変態だ け; (b) 873K、50%圧縮、動的再結晶だけ; (c) 913K、25%圧縮、主な動的相変態; (d) 913K、 50%圧縮、主な動的再結晶。

動的相変態の場合(図 2(a))、{111}方位より {001}方位を有する結晶が多いが,動的再結 晶の場合(図 2(b))、{111}方位と{001}方位を有 する結晶の量は近い。また、913K で 30%圧 縮した試料のバルク集合組織(図 2(c))は動的 相変態した試料の集合組織と似ているが, {111}方位と{001}方位の強度差は小さくなる。
913K で 50%圧縮した試料のバルク集合組織
(図 2(d))は動的再結晶に似合っていることが分かった。

(4) 室温バルク集合組織結果(図 2)を参照してこれまで得たその場逆極点図(図 1)は半定量的に使えることが判明し、飛行時間法中性子回折はフェライト変態や再結晶中のその場集合組織変化の観察に適することが分かった。

(5) 単相域加工と二相域加工は動的フェラ イト相変態を促進することを確認した。二相 域低温加工中に一定の歪みに達すると動的 フェライト再結晶が始まり、動的フェライト 変態と競合する。引き続き加工すると、動的 フェライト変態と動的フェライト再結晶と の競合によって全体的な微細化組織が得ら れることが明らかとなった。

(6) 国内の飛行時間法中性子回折装置を用いて先行予備研究として、マルテンサイト鋼について段階的な加熱・冷却中の構成相格子定数変化をその場で定量測定した。昇温、降温中のオーステナイト・フェライトニ相域中においてフェライトとオーステナイトの非線性熱膨脹が観察された。フェライトの非線性膨張は変態中に圧縮歪みが生じることを確認した。オーステナイトの非線性膨張は炭変能なるオーステナイトの炭素濃度変化と変態歪みに関係することを推定した。

図 3 低合金鋼加熱と冷却中の格子常数変化 から、拡散変態中フェライトに圧縮歪みが生 じることを確認した。

(7) 海外の飛行時間法中性子回折装置を用い て、冷間圧縮された同じ低合金鋼における段 階的な昇温・降温中の集合組織をその場測定 した。初期状態の室温組織(図 4(a))と最終室 温組織(図 4(g)、473K 以下の炉冷中には組織 が変わらないから、その場中性子回折実験の 効率を考えた上、473K で測定した)の間に集 合組織記憶効果は観察されなかったが、段階 的な昇温中に形成した再結晶フェライト組織(図4(b))と最終室温フェライト組織(図4(g)) の間に集合組織記憶効果が存在することを 確認した。873K までの加熱では再結晶が生 じ、冷間圧縮の変形蓄積エネルギーは消失し ているはずなので、その後の集合組織の記憶 効果が変形蓄積エネルギーに直接関係しな いことが初めて明らかになった。一方、拡散 変態でも相歪みがあるので、集合組織記憶効 果は相歪みに関与することが推定された。

図 4 冷間圧縮した低合金鋼加熱と冷却中の 集合組織変化

(8) 上記の海外における飛行時間法中性子回 折実験の経験は、国内の飛行時間法中性子回 折集合組織測定技術の開発に活用されてい る。

図5 TAKUMI 飛行時間法中性子回折装置を 用いた高温加熱中のその場実験から求めら れた逆極点図の例。North バンクのプロファ イルから対応する複相鋼板の RD 方向情報に より、フェライトは強い{hkl}<011>配向組織 (実際にここで hkl は 111 である)を示した。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計2件)

- <u>P.G. Xu</u>, K. Akita, H. Suzuki, N. Metoki, A. Moriai, Establishment and Optimization of Angle Dispersive Neutron Diffraction Bulk Texture Measurement Environments, Materials Transactions, 査読有, 2012, Vol.53, No.11, in press.
- ② P.G. Xu, Y. Tomota, S.C. Vogel, T. Suzuki, M. Yonemura, T. Kamiyama, Transformation Strain and Texture Evolution during Diffusional Phase Transformation of Low Alloy Steels Studied by Neutron Diffraction, Reviews on Advanced Materials Science, 査読有, 2012, Vol.33, in press.

〔学会発表〕(計11件)

- ① 徐平光、秋田貢一,飛行時間法中性子回 がバルク集合組織評価技術の開発現状と 未来,軽金属学会第122回春期大会, 2012年5月19-20日,九州大学,pp.65-66.
- ② P.G. Xu, Y. Tomota, S.C. Vogel, In Situ Crystallographic Orientation Observation during Phase Transformation of Low Alloy Steels Studied by Neutron Diffraction, 日本 鉄鋼協会第163回春季講演大会, 2012年3 月 28 日,東京:橫浜国立大学. CAMP-ISIJ, 2012, Vol.25, pp.400.
- ③ <u>P.G. Xu</u>, S. Harjo, S.C. Vogel, T. Ito and Y. Tomota, Recrystallization of Martensite and

Precipitation of Austenite during In Situ Annealing of Cold Rolled 17Ni-0.2C Martensite Steel Studied by Neutron Diffraction, THERMEC'2011 International Conference, 2011 年 8 月 5 日, Quebec, Canada. pp.432. (Invited lecture)

- ④ P.G. Xu, H. Suzuki, S. Harjo, T. Suzuki, Development and Prospect of Bulk Texture Measurement Technique by Neutron Diffraction, 軽金属学会第 120 回春期大会, 2011 年 5 月 21-22 日,名古屋大学, pp. 289-290.
- ⑤ 徐平光、鈴木裕士、目時直人、秋田貢一、 S.C Vogel、井上純哉,角度分散法と飛行時間法中性子回折による集合組織評価技術の比較と最適化,日本中性子科学会第10回年会,2010年12月7-9日,仙台:東北大学, PP.45.
- ⑥ 徐平光、ハルヨ・ステファヌス、伊藤崇芳、李建宏、友田陽,中性子回折による冷間圧延した 17Ni-0.2C 鋼焼き戻し中の再結晶と析出挙動,日本中性子科学会第10回年会講演概要集,2010, PP.46.
- ⑦ P.G. Xu, Y. Tomota, A. Paradowska, S.C. Vogel, Dynamic Ferrite Transformation Behavior during Hot Deformation of Low Alloy Steels Studied by Neutron Diffraction, 6th International Conference on Physical and Numerical Simulation of Materials Processing, 2010 年 11 月 17 日, Guilin, China, pp. 187.
- ⑧ 徐平光、友田陽、龔武、VOGEL Sven、鈴木裕士、鈴木徹也,動的フェライト変態した低合金鋼の組織観察と集合組織評価,日本鉄鋼協会第159回春季講演大会,2010.3.28~30,筑波大学. CAMP-ISIJ, 2010, Vol.23, pp. 515.
- (9) P.G. Xu, Y. Tomota, M.S. Koo, M. Yonemura, T. Suzuki, A. Paradowska, S.Y. Zhang, Y. Adachi, In Situ Crystallographic Observation of Dynamic Ferrite Transformation Evolution During Hot Deformation of Low Alloy Steels, MECA SENS V International Conference, 2009.11.10~12, Mito, Japan. pp.100.
- ID P.G. Xu, Y. Tomota, J.H. Li, E.C. Oliver, Y. Adachi, In Situ Crystallographic Observation of Dynamic Recrystallization Evolution during Warm Compression of Martensite Steels, MECA SENS V International Conference, 2009.11.10~12, Mito, Japan. pp.143.
- ① 徐平光、友田陽,その場中性子回折による低合金鋼熱間加工中の動的フェライト変態,日本鉄鋼協会第158回秋季講演大会「階層的3D/4D解析によるミクロ組織の多様性の解明」シンポジウム,2009.9.16,

京都大学.pp.111-116.(依頼講演)

〔図書〕(計2件)

- ① <u>P.G. Xu</u>, Y. Tomota, Recrystallization Behavior during Warm Compression of Martensite Steels, Chapter 5 in: K. Sztwiertnia, edited, *Recrystallization*, Croatia: InTech – Open Access Company, 査読有, 2012, pp.87-108.
- ② Y. Tomota, <u>P.G. Xu</u>, E.C. Oliver, A. Paradowska, In Situ Neutron Diffraction during Thermo-mechanically Controlled Process for a Low Alloy Steel, Chapter 12 in: T. Kannengiesser, S.S. Babu, Y. Komizo, A. J. Ramirez, edited, *In Situ Studies with Photons, Neutrons and Electrons Scattering*, Germany: Springer-Verlag, Berlin Heidelberg, 查読有, 2010, pp.175-190.
- 6. 研究組織
- (1)研究代表者
 徐 平光 (XU PINGGUANG)
 独立行政法人日本原子力研究開発機
 構・量子ビーム応用研究部門・研究員
 研究者番号:80554667