科学研究費助成事業

研究成果報告書

6 月 2 1 日現在 令和 6 年

機関番号: 20106
研究種目: 基盤研究(B)(一般)
研究期間: 2021 ~ 2023
課題番号: 21H01756
研究課題名(和文)炭化鉄クラスターの精密合成法開発と異常磁性の解明
研究细胞夕(茶文)Development of precision eventhesis method for iron earbide eluctors and
研究缺乏者(英文)Development of precision synthesis method for from carbide crusters and elucidation of anomalous magnetism
研究代表者
脇坂 聖憲(Wakizaka, Masanori)
公立千歳科学技術大学・理工学部・准教授
研究者番号:0 0 7 8 6 8 4 0
│ 父竹决正額(研究期間全体):(直接経質) 13,500,000 円

研究成果の概要(和文):本研究は強磁性体となる炭化鉄クラスターの精密合成法の確立と磁気メカニズムの解明を目的とする。さらに、この様な極めて小さな磁石の性質を理解する上で不可欠である量子の磁石として、単分子磁石、単イオン磁石、スピン量子ビットに関しても合成と磁気解明を行い、主に次の4つの成果を得た。 (1)グラファイト性カーボン担体に担持した炭化鉄クラスターの磁気解明、(2)クエン酸配位子を用いたアニオン性多核錯体合成と磁気解明、(3)Co(11)及びCu(11)ドーピング型金属有機構造体の合成と量子磁性解明、(4)Cu(11)一次元鎖化合物の合成と量子磁性解明。

研究成果の学術的意義や社会的意義 ハードディスクの心臓部である磁気記憶素子にはナノサイズの磁石が使われている。ナノ磁石1つ1つに0または 1の情報が保存されるため、磁石をより小さくすれば記憶密度と容量が向上する。しかしやっかいなことに、磁 石 をナノレベルまで小さくすると超常磁性と呼ばれる磁気現象が現れ、室温ではもはや磁石として働かなくな ってしま う。従来のナノ磁石よりもさらに小さいクラスター磁石を作ることができれば、次世代の超高密度磁 気記憶素子として社会の発展に大きく貢献できる。本成果により炭化鉄とグラファイト担体の相互作用が磁力を 増強する効果があることがわかり、今後のナノ磁石やクラスター磁石開発に資すると期待される。

研究成果の概要(英文): The purpose of this study is to establish a precise synthesis_method for iron carbide clusters having ferromagnetism and to elucidate the magnetic mechanism. Furthermore, to understand such extremely small magnet properties, this work synthesized and elucidated the quantum magnetic properties of single molecule magnets, single ion magnets, and spin qubits. This work achieved the following four main results: (1) Elucidation of magnetism of iron carbide clusters supported on the graphitic carbon support, (2) Synthesis and elucidation of magnetic of anionic polynuclear complexes using citric acid ligands, (3) Synthesis and elucidation of quantum magnetisms of a context of graphitic carbon supports. of Co(II)- and Cu(II)-doped metal-organic frameworks (4) Synthesis and elucidation of quantum magnetism of Cu(II) one-dimensional chain compounds.

研究分野: 錯体化学·材料科学

キーワード:炭化鉄 クラスター 金属錯体 磁性

科研費による研究は、研究者の自覚と責任において実施するものです。そのため、研究の実施や研究成果の公表等に ついては、国の要請等に基づくものではなく、その研究成果に関する見解や責任は、研究者個人に帰属します。

1. 研究開始当初の背景

炭化鉄は製鉄の過程で発生するごくありふれた物質 である。古くから磁石になることも知られていた。最 近、申請者はサブナノサイズの炭化鉄クラスターの合 成に世界で初めて成功した。興味深いことに、何の変哲 もない物質と考えられてきた炭化鉄が、サブナノ領域 で異常な磁性を示した。小さくなるごとに磁石として の性能「保磁力」が向上したのだ。通常、磁性体はサブ ナノサイズに近づくと保磁力が低下する。異方的に固 定されていたスピンの向きがサイズ減少により熱エネ ルギーの影響を受け等方的になるためである。このよ うなサブナノ領域における保磁力の消失は超常磁性と よばれ、極小磁石開発の壁となっている。したがって、 炭化鉄クラスターの異常磁性のメカニズムを解明すれ ば超常磁性限界を突破するブレイクスルーになる可能 性がある。

特に興味深いのが四核クラスター(粒子サイズ約 0.6 nmと推定)で、合成した中で最も強い保磁力を示 した(図1上)。これらのクラスターが酸化物ではなく 炭化物の特徴をもつことは XAFS(X線吸収微細構造) から明らかとなった(図1下)。高温下の空気酸化によ り磁化が消失したので炭化鉄由来の磁性であることは 確認済みである。また、極低温(1.9 K)の磁気モーメ ントから見積もられる Fe存在量と実際の Fe存在量が 一致したため不純物由来のスピンではない。しかし担 持量が少ないことから EXAFS 領域までは観測されず Fe-Fe 結合距離などの構造は未だ明らかになっていな い。これまでの合成法では溶液中で置換活性な高分子 錯体を鋳型に用いたため、少核数クラスターの原子数

図1. 炭化鉄クラスターの1.9 Kの保 磁力とMH曲線 (上). Fe-K XANESス ペクトル (下). 12核と4核は蛍光法.

制御と高密度担持の両立が困難であった。したがって担持量の大幅な向上と核数の精密制御を 可能にする新しい合成法の開発が必要である。

2. 研究の目的

本研究は、強磁性体となる炭化鉄クラスターの精密合成法の確立と磁気メカニズムの解明を 目的とした。また、この様な極めて小さな磁石の性質を理解する上で不可欠である、量子の磁石 である単分子磁石、単イオン磁石、スピン量子ビットに関しても合成と磁気解明を行った。

3. 研究の方法

(1)炭化鉄クラスターの磁気解明

オーブン付きの磁気測定装置を利用した高温測定と、磁場冷却(FC)及びゼロ磁場冷却(ZFC) 曲線を測定することで、キュリー点と磁石として保磁力を示す温度であるブロッキング温度を 明らかにし、粒子サイズ依存性を解明する。

(2) アニオン性多核錯体合成と磁気解明

炭化鉄クラスターの新しい前駆体となるアニオン性多核錯体の合成法を確立する。3d 遷移金 属のクエン酸錯体は単核から四核までアニオン性の錯体が報告されているのでこれを活用し、 磁気特性を明らかにする。

(3) ドーピング型金属有機構造体の量子磁性解明

S = 3/2のスピンを持つ Co(II)やS = 1/2のスピンを持つ Cu(II)を反磁性 Zn(II)金属有機構 造体(MOF)にドーピングし、磁気特性のドーピング濃度依存性を明らかにする。

(4) Cu(II) 一次元鎖化合物の量子磁性解明

S = 1/2のスピンを持つCu(II)を一次元状に繋げた錯体化合物を合成し、磁気特性を明らかにする。

(1)炭化鉄クラスターの磁気解明

カーボン担体に担持した炭化鉄クラスター(鉄の核数:約4核、約12核、約28核、約60 核)の磁化曲線と比較としてバルク炭化鉄(セメンタイト、Fe3C)の磁化曲線を測定した。バル ク炭化鉄のキュリー点 (Tc) は 483 K であるが、炭化鉄クラスターのキュリー点も粒子サイズに よらずほぼ同じ値であった。これは炭化鉄の磁気相互作用は原子間距離だけに依存する直接交 換が主であるためと考えられる。つまり、バルクとクラスターでは結晶性は異なるはずだが、Fe-Fe 間距離は同程度と考えられるため、磁気相互作用の強さに変化はなく、同程度のキュリー温 度を示したと考えられる。一方 FC-ZFC 測定では、ブロッキング温度 (TB) はバルクでは 467 K であったのに対し、60核クラスターでは385Kに低下した。これはナノ粒子化による超常磁性 の傾向と考えられる。しかし、より小さくした28核クラスターでは473Kと上昇する異常な挙 動が見られる。また、さらに小さい 12 核クラスターや4核クラスターでも測定ノイズによる幅 はあるが TBは同程度の温度域であった。この不規則な変化はクラスターに特有のものと考えら れ、担体カーボンであるグラファイトとの相互作用が強く磁性に影響を与えていると考えられ る。つまり、60 核程度のクラスターでは担体と接する原子の割合が限られるため相互作用によ る恩恵をあまり受けられず、より核数の少ないクラスターでは担体と接する原子の割合が多く なるため相互作用による恩恵が強く現れる。超常磁性の効果と担体との相互作用による効果が 拮抗する領域が観測されたのではないかと考えられる(表1:RSC Advances, 2022, 12, 3238-3242.)。

Sample	<i>d</i> [nm]	Fe loading ^{c)} [wt%]	$m^{ m d)}$ [$\mu_{ m B}$ atom _{Fe} ⁻¹]	H _c ^{e)} (1.9 K) [Oe]	H _c (300 K) [Oe]	<i>T</i> _B ^{f)} [K]	<i>T</i> c ^{g)} [K]
Fe ₃ C	39 ^{a)}	_	1.5	166	21	467	483
Fe ₆₀ /C	$1.3{\pm}0.3^{\text{ b})}$	0.20	2.3	603	140	ca. 385	483±5
Fe ₂₈ /C	$1.0{\pm}0.3^{\text{ b})}$	0.13	1.5	939	163	473	483±5
Fe ₁₂ /C	$0.9{\pm}0.2^{\text{ b)}}$	0.056	1.6	1856	367	$410 - 470^{h}$	ca. 488
Fe ₄ /C	_	0.013	1.0	2697	666	$350-470^{h}$	ca. 488

表1.炭化鉄クラスターの磁気特性のまとめ

^{a)} Crystal diameter estimated based on PXRD data. ^{b)} Particle diameter estimated based on TEM data. ^{c)} Loading amount of Fe in the sample after CHR as measured using ICP-AES; the experimental error was estimated to be ca. 10%. ^{d)} Magnetic moment per Fe atom estimated based on the saturation magnetization at 1.9 K. ^{e)} Coercivity. ^{f)} Blocking temperature. ^{g)} Curie temperature. T_B and T_C were calibrated using $T_C = 483$ K (Fe₃C as a standard),⁹ and were determined from the maximum of the second derivative of the *M*–*T* curve. ^{h)} Uncertainty is due to the measurement sensitivity limit and noise.

(2) アニオン性多核錯体合成と磁気解明

クエン酸二核錯体である[CH6N3]2[M2(citH)2(H2O)4]・ 2H₂O (citH₄ = クエン酸; M = Fe^{II} (Fe-2), Co^{II} (Co-2), Ni^{II} (Ni-2))、を新規合成した。既報のクエン酸錯体は強塩 基を用いることで3つのカルボキシ基と1つの水酸 基を脱プロトン化した cit⁴配位子を有する4核錯体 であったが、今回クエン酸を脱プロトン化するための 塩基として塩基性度の弱いアンモニアを用いること で、クエン酸の3つのカルボキシ基のプロトンが外れ た citH³を有する二核錯体を合成できた。磁気測定に より、これらの二核錯体は J=~0 cm⁻¹ (Ni-2)、0.02 cm⁻¹ ¹(Co-2)、0.9 cm⁻¹(Fe-2)の分子内強磁性を持っている ことが明らかになった。特に Co-2 と Fe-2 は遅い磁 気緩和を示し、スピン反転 Ueff=27 cm⁻¹ (Co-2) と 4.2 cm⁻¹ (Fe-2) の活性化エネルギーを持つ磁場誘起型単 分子磁石であることが明らかになった。さらに密度汎 関数理論計算によって、各金属イオン中心の z 軸に沿

った一軸異方性が擬似直列スピン配置を形成し、磁気双極子相互作用を介して分子内強磁性を 引き起こすことが示された(図2: *Chemistry – A European Journal*, **2023**, *2023*, e202203421.)。 (3) ドーピング型金属有機構造体の量子磁性解明

単一イオン磁石 (SIM) やスピン量子ビッ トは、分子設計性に富み剛直な有機金属フレ ームワーク (MOF) と組み合わせることによ り、新しい量子材料として活用が見込まれる と期待される。この点で解決すべき問題は、そ のような材料を合成するための新しい戦略を 開発することである。本研究では、SIM サイト とスピン量子ビットサイトがドーピングされ るフレームワークとして反磁性 MOF を使用 し、SIM-MOF とスピン量子ビット MOF を合 成するための新しい簡単な戦略を示した。

1, 0.5, 0.2 mol% の Co(II) イオンを [CH₆N₃][Zn(HCOO)₃]の Zn(II)サイトにドーピングした。MOF 内のドーピングされた Co(II)サイトは、磁気測定、電子スピン 共鳴 (ESR) 測定、CASSCF 計算によって明らかにした。磁気 測定により、最長の磁気緩和時間は、0.1 T の静磁場下 1.8 K で 150 ms (0.2 mol% Co) であることが明らかになった(図3: Small, 2023, 19, 2301966.)。

また、 $5, 2, 1, 0.1 \mod\% O \operatorname{Cu}(II) / オンを[CH_6N_3][Zn(HCOO)_3]$ のZn(II)サイトにドーピングした。これらのCu(II)ドープMOF は、磁場下で遅い磁気緩和を示すことがわかった。これは、 $M_{\rm S} = \pm 1/2$ 状態間の緩和と考えられる。最長の磁気緩和時間 は、0.4 T の静磁場下 1.8 K で 15 ms (1 mol% Cu) であった。 さらにパルス ESR 測定により、 T_1 および T_2 緩和を測定し、 マイクロ秒スケールの T_2 緩和を示すことが明らかになった。 さらに、 $M_{\rm S} = \pm 1/2$ 状態間のラビ振動を 10 K で観測すること に成功した(図 4 : Chemistry – A European Journal, **2024**, 30, e202304202.)。

(4) Cu(II)一次元鎖化合物の量子磁性解明

CuI、1R,2R-ジアミノシクロヘキサン (chxn)、ヨウ素をエタノール中で加熱環流する ことで反応を行い、目的物である[Cu^{II}(chxn)₂I]I を紫色結晶として収率 65%で得た。単結晶 X 線構造解析により、Cu周りに chxn 二分子が平 面位から配位し、軸位をヨウ化物イオンが架 橋した一次元鎖構造を形成していることがわ かった。chxn のキラリティにより、一次元鎖 は一方向に巻いた螺旋構造を取り、対称心を 持たない三方晶系 (P3₂21)の結晶構造を有す る。直流法の磁化率測定によって、弱い反強磁 性が確認された。理論フィッティングから、鎖

Frequency / Hz

図3. Co(II)ドープMOFの単イオン磁性.

図4. Cu(II)ドープMOFのスピ ン量子ビット.

内の Cu(II)間の磁気相互作用は $J = -0.3 \text{ cm}^{-1}$ と見積もられた。スピンは鎖軸にほぼ直交した d_x^2 , ² 軌道に局在するため超交換相互作用は生じず、磁気双極子相互作用によるものと考えられる。 また、固体状態における電子スピン共鳴法によって、Cu(II)スピンの異方性 ($g_{\parallel} = 2.17, g_{\perp} = 2.06$) が確認された。更に交流法の磁化率測定を行い、ゼロ磁場では緩和を示すシグナルが観測されな かったが、静磁場を印加することでそのシグナルが観測された。交流磁化率の虚数成分のピーク をデバイ緩和式でフィッティングし、1.8 K で 43 ms の遅い緩和を示すことが明らかになった。 この磁気緩和は、静磁場によってゼーマン分裂した $M_S = \pm 1/2$ スピン副準位間の緩和に相当する と考えられる。更に温度依存性を測定し、ラマン過程 ($\mathfrak{r} = CT^{-m}$) で磁気緩和することがわかっ た。フィッティングから指数 m は 4 であり、振動モードとカップリングした磁気緩和が生じて いることが明らかになった(図 5: Dalton Transactions, 2023, 52, 10294–10297.)。

5 . 主な発表論文等

〔雑誌論文〕 計10件(うち査読付論文 10件/うち国際共著 0件/うちオープンアクセス 1件)

1. 著者名	4.巻
Wakizaka Masanori, Matsumoto Takeshi, Chang Ho-Chol	52
2. 論文標題	5 . 発行年
Switching of the redox centers of a tris-2-mercaptophenolato chromium(III) metalloligand by a	2023年
guest metal ion	
3.雑誌名	6.最初と最後の頁
Dalton Transactions	1538 ~ 1542
掲載論文のDOI(デジタルオプジェクト識別子)	査読の有無
10.1039/d2dt03502b	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-

	4.巻
Wakızaka Masanorı, Sato letsu, Yoshino Yuko, Takaishi Shinya, Yamashita Masahiro	29
2.論文標題	5 . 発行年
Intramolecular Ferromagnetism in Di Nuclear 3d Transition Metal Single Molecule Magnets by	2023年
Pseudo Serial Arrangement	
3. 雑誌名	6.最初と最後の頁
Chemistry – A European Journal	e202203421~
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
10.1002/chem.202203421	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-

1.著者名	4.巻
Wakizaka Masanori, Chun Wang-Jae, Imaoka Takane, Yamamoto Kimihisa	12
2.論文標題	5 . 発行年
Synthesis and magnetic properties of sub-nanosized iron carbides on a carbon support	2022年
3.雑誌名	6.最初と最後の頁
RSC Advances	3238 ~ 3242
掲載論文のD01(デジタルオプジェクト識別子)	査読の有無
10.1039/d1ra09191c	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-

1.著者名 Wakizaka Masanori、Kumagai Shohei、Wu Hashen、Sonobe Takuya、Iguchi Hiroaki、Yoshida Takefumi、 Yamashita Masahiro、Takaishi Shinya	4.巻 ¹³
2.論文標題 Macro- and atomic-scale observations of a one-dimensional heterojunction in a nickel and palladium nanowire complex	5 . 発行年 2022年
3.雑誌名	6 . 最初と最後の頁
Nature Communications	1188~
掲載論文のDOI(デジタルオプジェクト識別子)	査読の有無
10.1038/s41467-022-28875-8	有
オープンアクセス	国際共著
オープンアクセスとしている(また、その予定である)	

1.著者名 Wakizaka Masanori、Mian Mohammad Rasel、Yoshida Takefumi、Sato Tetsu、Tanaka Hisaaki、Miyamoto	4.巻 61
2.論文標題 Ni(III) Mott-Hubbard-like State Containing High-Spin Ni(II) in a Semiconductive Bromide-Bridged Ni-Chain Compound	5 . 発行年 2022年
3. 雑誌名 Inorganic Chemistry	6.最初と最後の頁 9504~9513
掲載論文のDOI(デジタルオプジェクト識別子) 10.1021/acs.inorgchem.2c00473	査読の有無 有
1.著者名 Wakizaka Masanori、Wu Hashen、Li Zhao-Yang、Iguchi Hiroaki、Takaishi Shinya、Yamashita Masahiro	4.巻 95
2.論文標題 Trimetallic Mixture of Ni(III), Pd(III) and Au(III) Ions in a Molecule-Based Bromide-Bridged MX-Chain Compound	5 .発行年 2022年
3.雑誌名 Bulletin of the Chemical Society of Japan	6 . 最初と最後の頁 1032~1038
掲載論文のDOI(デジタルオプジェクト識別子) 10.1246/bcsj.20220137	査読の有無 有
オープンアクセス オープンアクセスではない、又はオープンアクセスが困難	国際共著
1.著者名 Wakizaka Masanori、Iguchi Hiroaki、Takaishi Shinya、Yamashita Masahiro	4.巻 16
 著者名 Wakizaka Masanori、Iguchi Hiroaki、Takaishi Shinya、Yamashita Masahiro : 論文標題 Surface Ohmic Conductivity on a Mott Insulator Based on a One dimensional Bromide bridged Nickel(III) Complex 	4 . 巻 16 5 . 発行年 2021年
 著者名 Wakizaka Masanori、Iguchi Hiroaki、Takaishi Shinya、Yamashita Masahiro 論文標題 Surface Ohmic Conductivity on a Mott Insulator Based on a One dimensional Bromide bridged Nickel(III) Complex 3.雑誌名 Chemistry - An Asian Journal 	4 . 巻 16 5 . 発行年 2021年 6 . 最初と最後の頁 2947~2951
1.著者名 Wakizaka Masanori、Iguchi Hiroaki、Takaishi Shinya、Yamashita Masahiro 2.論文標題 Surface Ohmic Conductivity on a Mott Insulator Based on a One dimensional Bromide bridged Nickel(III) Complex 3.雑誌名 Chemistry - An Asian Journal 掲載論文のDOI(デジタルオブジェクト識別子) 10.1002/asia.202100637	4 . 巻 16 5 . 発行年 2021年 6 . 最初と最後の頁 2947 ~ 2951 査読の有無 有
1.著者名 Wakizaka Masanori、Iguchi Hiroaki、Takaishi Shinya、Yamashita Masahiro 2.論文標題 Surface Ohmic Conductivity on a Mott Insulator Based on a One dimensional Bromide bridged Nickel(III) Complex 3.雑誌名 Chemistry - An Asian Journal 掲載論文のDOI(デジタルオブジェクト識別子) 10.1002/asia.202100637 オープンアクセス オープンアクセスではない、又はオープンアクセスが困難	4 . 巻 16 5 . 発行年 2021年 6 . 最初と最後の頁 2947 ~ 2951 査読の有無 有 国際共著 -
 著者名 Wakizaka Masanori、Iguchi Hiroaki、Takaishi Shinya、Yamashita Masahiro 論文標題 Surface Ohmic Conductivity on a Mott Insulator Based on a One dimensional Bromide bridged Nickel(III) Complex 強誌名 Chemistry - An Asian Journal 掲載論文のDOI(デジタルオプジェクト識別子) 10.1002/asia.202100637 オープンアクセス 	4 . 巻 16 5 . 発行年 2021年 6 . 最初と最後の頁 2947 ~ 2951 査読の有無 有 国際共著 -
 1.著者名 Wakizaka Masanori、Iguchi Hiroaki、Takaishi Shinya、Yamashita Masahiro 2.論文標題 Surface Ohmic Conductivity on a Mott Insulator Based on a One dimensional Bromide bridged Nickel(III) Complex 3.雑誌名 Chemistry - An Asian Journal 掲載論文のDOI(デジタルオブジェクト識別子) 10.1002/asia.202100637 オープンアクセス オープンアクセス 1.著者名 Wakizaka Masanori、Ishikawa Ryuta、Tanaka Hisaaki、Gupta Shraddha、Takaishi Shinya、Yamashita Masahiro 	4 . 巻 16 5 . 発行年 2021年 6 . 最初と最後の頁 2947~2951 査読の有無 有 国際共著 - 4 . 巻 19
1.著者名 Wakizaka Masanori, Iguchi Hiroaki, Takaishi Shinya, Yamashita Masahiro 2.論文標題 Surface Ohmic Conductivity on a Mott Insulator Based on a One dimensional Bromide bridged Nickel(III) Complex 3.雑誌名 Chemistry - An Asian Journal 掲載論文のDOI(デジタルオブジェクト識別子) 10.1002/asia.202100637 オープンアクセス オープンアクセスではない、又はオープンアクセスが困難 1.著者名 Wakizaka Masanori, Ishikawa Ryuta, Tanaka Hisaaki, Gupta Shraddha, Takaishi Shinya, Yamashita Masahiro 2.論文標題 Creation of a Field Induced Co(11) Single Ion Magnet by Doping into a Zn(11) Diamagnetic Metal-Organic Framework	4 . 巻 16 5 . 発行年 2021年 6 . 最初と最後の頁 2947~2951 査読の有無 有 国際共著 - 4 . 巻 19 5 . 発行年 2023年
1.著者名 Wakizaka Masanori, Iguchi Hiroaki, Takaishi Shinya, Yamashita Masahiro 2.論文標題 Surface Ohnic Conductivity on a Mott Insulator Based on a One dimensional Bromide bridged Nickel(III) Complex 3.雑誌名 Chemistry - An Asian Journal 掲載論文のDOI(デジタルオブジェクト識別子) 10.1002/asia.202100637 オープンアクセス オープンアクセス パープンアクセス 2.論文標題 Creation of a Field Induced Co(II) Single Ion Magnet by Doping into a Zn(II) Diamagnetic Metal-Organic Framework 3.雑誌名 Small	4.巻 16 5.発行年 2021年 6.最初と最後の頁 2947~2951 査読の有無 有 国際共著 - 4.巻 19 5.発行年 2023年 6.最初と最後の頁 2301966~
1.著者名 Wakizaka Masanori, Iguchi Hiroaki, Takaishi Shinya, Yamashita Masahiro 2.論文標題 Surface Ohmic Conductivity on a Mott Insulator Based on a One dimensional Bromide bridged Nickel(III) Complex 3. 雑誌名 Chemistry - An Asian Journal 掲載論文のDOI (デジタルオブジェクト識別子) 10.1002/asia.202100637 オープンアクセス オープンアクセス 水ープンアクセス Xakizaka Masanori, Ishikawa Ryuta, Tanaka Hisaaki, Gupta Shraddha, Takaishi Shinya, Yamashita Masahiro 2.論文標題 Creation of a Field Induced Co(II) Single Ion Magnet by Doping into a Zn(II) Diamagnetic Metal-Organic Framework 3. 雑誌名 Small 掲載論文のDOI (デジタルオブジェクト識別子) 10.1002/sml1.202301966	4 . 巻 16 5 . 発行年 2021年 6 . 最初と最後の頁 2947 ~ 2951 査読の有無 有 国際共著 - 4 . 巻 19 5 . 発行年 2023年 6 . 最初と最後の頁 2301966~ 査読の有無 有

1.著者名 Wakizaka Masanori、Gupta Shraddha、Wan Qingyun、Takaishi Shinya、Noro Honoka、Sato Kazunobu、	4.巻 30
Yamashita Masahiro	
2.論文標題	5 . 発行年
Spin qubits of Cu(II) doped in Zn(II) metal?organic frameworks above microsecond phase memory	2024年
time	
3. 雑誌名	6.最初と最後の頁
Chemistry - A European Journal	e202304202 ~
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
10.1002/chem.202304202	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-

1.者者名 Wakizaka Masanori、Arczynski Miroslaw、Gupta Shraddha、Takaishi Shinya、Yamashita Masahiro	4.
2.論文標題	5 . 発行年
Spin dynamics in a Heisenberg weak antiferromagnetic chain of an iodide-bridged Cu(II) complex	2023年
3. 雑誌名	6.最初と最後の頁
Dalton Transactions	10294 ~ 10297
掲載論文のDOI(デジタルオプジェクト識別子)	査読の有無
10.1039/d3dt01840g	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-

〔学会発表〕 計8件(うち招待講演 2件/うち国際学会 5件)

1.発表者名

Masanori Wakizaka, Mohammad Rasel Mian, Hiroaki Iguchi, Shinya Takaishi, Masahiro Yamashita

2.発表標題

Ni(III) Mott-Hubbard-like State Containing High-Spin Ni(II) in a Semiconductive Bromide-Bridged Ni-Chain Compound

3 . 学会等名

錯体化学第72回討論会

4 . 発表年 2022年

1.発表者名

Masanori Wakizaka, Shinya Takaishi, Masahiro Yamashita

2.発表標題

Latest progress on halogen-bridged metal complex chemistry

3.学会等名

日本化学会第103春季年会

4 . 発表年 2023年

. 発表者名

1

Masanori Wakizaka, Hiroaki Iguchi, Masahiro Yamashita, Shinya Takaishi

2.発表標題

Macro- and atomic-scale observations of a one-dimensional heterojunction in a nickel and palladium nanowire complex

3.学会等名

8th Asian Conference on Coordination Chemistry(国際学会)

4.発表年

2022年

1.発表者名

Masanori Wakizaka, Mohammad Rasel Mian, Hiroaki Iguchi, Shinya Takaishi, Masahiro Yamashita

2.発表標題

Low-spin Ni(III) and high-spin Ni(II) mixed-valency in the bromide-bridged Ni-chain complex

3 . 学会等名

2nd Asian Conference on Molecular Magnetism(国際学会)

4.発表年 2022年

1.発表者名

Masanori Wakizaka

2.発表標題

Particle-size-dependent transformation between Mo carbide and oxycarbide at 1.3 nm

3 . 学会等名

The 2021 International Chemical Congress of Pacific Basin Societies(国際学会)

4.発表年 2021年

1.発表者名

Masanori Wakizaka, Hiroaki Iguchi, Shinya Takaishi, Masahiro Yamashita

2.発表標題

Macro- and atomic-scale observations for one-dimensional heterojunction in a nickel and palladium nanowire complex

3 . 学会等名

錯体化学第71回討論会

4.発表年 2021年

1.発表者名

Masanori Wakizaka, Masahiro Yamashita

2.発表標題

Creation of Co(II) Single-Ion Magnets by Doping into Zn(II) Diamagnetic Metal-Organic Frameworks

3 . 学会等名

8th International Conference on Superconductivity and Magnetism(招待講演)(国際学会)

4 . 発表年

2023年

1 . 発表者名

Masanori Wakizaka

2.発表標題

Creation of quantum spin system doped in metal-organic frameworks

3 . 学会等名

The 18th International Conference on Molecule–Based Magnets Rising Star Symposium(招待講演)(国際学会)

4 . 発表年

2023年

〔図書〕 計0件

〔産業財産権〕

〔その他〕

<u>6 . 研究組織</u>

	氏名 (ローマ字氏名) (研究者番号)	所属研究機関・部局・職 (機関番号)	備考
--	---------------------------	-----------------------	----

7.科研費を使用して開催した国際研究集会

〔国際研究集会〕 計0件

8.本研究に関連して実施した国際共同研究の実施状況

共同研究相手国	相手方研究機関