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The Construction of A Prognostic Model for Heart Failure in Deep Learning
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Artificial intelligence (Al) is expected to able to find regularities in
complex data and analyze them to find new findings. Real World Data consists of heterogeneous
patient groups, which is sometimes difficult to perform multiple regression analysis due to data
bias and confounding factors.1273 heart failure patients were analyzed to predict the outcome from
DPC database. The network-based model showed better prediction performance than a deep feed-forward
neural network-based model and Cox proportional hazard model in identifying patients with high risk
of mortality. Al model demonstrated an improved prognostic prediction performance in consideration
of temporal information from time-varying covariates that could assist clinical decision-making. In
this study, Al model in heart failure found that si%nificant risk and protective factors of
mortality were specific to risk levels and causes of mortality, highlighting the demand in an
individual-specific clinical strategy.
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Variables and Cutoff Values Hazard Ratio p Value
Age <73 years 0.28 (0.13-0.58) <0.001
Age > 80 years 2.22 (1.40-3.55) <0.001
Cecr at discharge <20 mL/min 3.63 (2.34-5.63) <0.001
Ccr at discharge > 28 mL/min 0.35 (0.22-0.55) <0.001
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