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The porous media found interest in many fields of engineering. Particularly, the porous electrode
microstructure determines the performances of fuel cells and batteries. This study proposed
comprehensive framework for analyzing porous media microstructures based on machine learning
methods.

An automated microstructure analysis framework using machine learning was
developed. The framework was built to improve three-dimensional (3D) microscopy analysis by super
resolution and semantic segmentation algorithms. The developed framework can contribute in
shortening actual measurement time up to 8 times and data post-processing time by two orders of
magnitude. Furthermore, a novel method with generative network was proposed to create an artificial
3D microstructure model from a single two-dimensional image. Additionally, the generative network
trained with microstructure datasets, can fabricate realistic microstructure models with predefined
properties and gradients. The automated segmentation framework was used to characterize gadolinium
doped ceria ceria-based solid oxide fuel (SOFC) anodes with the controlled properties (porosity,
material composition, and particle size) and it enables to reconstruct SOFC anode with carbon
deposition.
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The multiscale porous media found interest in many fields of engineering. In particular,
the porous electrode microstructure determines the performances of fuel cells and
batteries. The multi-sized pore design is beneficial, because large pores enhance the
gas transport and nano—pores increase active reaction area. In particular, the
microstructure of anode determines electrochemical performance of Solid Oxide Fuel
Cell (SOFC). Although there are many studies discussing dependance between SOFC

performance and their microstructural properties, the correlation is still not clear.

Most common method to analyze 3-D structures with feature size of 0.01 - 30 pym is focus
ion beam—scanning electron microscope (FIB-SEM). However, the limitations of this
technique for electrodes are attributed to the length scales of relevant microstructure
features which cover several orders of magnitude. The rapid development of deep learning
is revolutionizing many fields of engineering including material engineering, but its
applicability to multi-scale porous media is limited. It is expected that machine
learning methods can help in characterization of SOFC microstructures and finally help

in developing improved electrodes
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(1) Providing strategy to fabricate the porous electrode of SOFC, considering balance
between the diffusion management and electrochemically active reaction sites

(2) Providing new tools based on machine learning for microstructure studies in various
fields of energy engineering and ceramics processing. It aims to provide set of

algorithms which enable
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(2) The following algorithms for processing
of microstructure data based on machine
learning were developed:

e semantic segmentation algorithms for
automatic processing large number of SEM
images. The algorithm incorporates patch—
based convolutional neural network
(patch—- CNN) in the encoder—decoder
configuration (Fig. 2). The proposed

Fig.3 Super resolution results: A)
network is utilized for segmentation of  VDSR and B) C-GAN (Yamagishi, R.,
Sciazko, A., Ouyang, Z., Komatsu,
resin infiltrated cross—sectional images Y., Nishimura, K. and Shikazono,

N., ECS Trans., 103, 2087 (2021)).
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developed basing on the wide range of

machine learning techniques. The proposed

automatic processing of large SEM image

datasets with accuracy over 98% and decreased processing time by two ranks of
order from days to hours (Fig. 2). The second tackled problem was improving the
focus—ion beam scanning electron microscopy (FIB-SEM) measurements by super—
resolving of in—depth direction by the patch-VDSR residual network (Fig. 3A). The
application of the algorithm enables decreasing FIB—SEM measurement time up to 8
times without loss of the resolution. Additionally, the C-GAN based algorithm was

developed for improving quality of laser microscope images (Fig 3B).

The GAN P3P algorithm was proposed for reconstructing artificial isotropic 3D model
directly from 2D cross—sectional image (Fig. 5A). The model is designed for the
isotropic structures as shown in Fig. 5B. The weak GAN?* network was further
developed for anisotropic materials enabling reconstructing microstructures with
interfaces (Fig. 5C). Both visual quality and statistical characteristics of the
artificial models are in very good agreement with real data. Moreover, C—GAN
model was trained with microstructural database with various porosities, particle
sizes and compositions as shown in Fig. 4A. The trained C-GAN network enables
fabricating realistic 2D and 3D artificial microstructure model with predefined

properties and gradients of properties along electrode (Fig. 4B-C).

The proposed algorithms were applied to automatic processing and analyzing data of
GDC-based electrodes with various microstructural properties. The GDC-based
composites were prepared with nickel and perovskite materials and their
performance was correlated with microstructures. The examples of Ni-GDC anodes

with various particle size, porosity and GDC share are shown in Fig. 6. The optimal



condition for electrode fabrication was discussed in respect to the porosity,
composition, and particle size. It was shown that the increased GDC composition,
decreased porosity and decreased particle size resulted in the improved
electrochemical performance as the number of electrochemical reaction sites
increased (Fig. 7A). At the same time, the high GDC share over 80% in the composite
may resulted in the porosity decrease and increase of gas diffusion resistance due
to particle coarsening. Additionally, the degradation testing was conducted for
Ni-based electrodes exposed to methane. 3D carbon structures in SOFC anodes are
reconstructed for the first time with the machine learning—assisted segmentation
method without resin infiltration. It was shown that the nickel particles pulverize
by metal dusting and ceramic support network is destroyed by the internal stress
caused by carbon deposition. The correlation between electrode microstructure and
carbon deposition was discussed highlighting influence of porosity and gas

diffusion process (Fig. 7B).
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Fig. 7 A) Correlation between electrochemical performance and microstructures of Ni-—
GDC anodes B) results of the carbon deposition test for Ni—GDC anodes exposed to
methane. Sciazko, A., Komatsu, Y., Nakamura, A., Sunada, Y., Ouyang, Z., Hara, T. and
Shikazono, N., 15th European SOFC & SOE Forum, B1104, Lucerne, (2022)
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