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I proposed a novel PAM control with fuzzy-based automatic excitation angle and an adaptive deadtime
algorithm, that are useful for IPMSM drives in electric vehicle with reduction of motor and inverter
losses. The obtained results can be treated as reference for design of high-efficient motor drives.

- A novel pulse amplitude modulation (PAM) control with a fuzzy-based
automatic excitation angle scheme was successfully developed and implemented in an experimental
IPMSM drive under silicon carbide (SiC) inverter excitation at different rotational speeds.
Furthermore, 1 successfully developed an adaptive dead-time algorithm for the IPMSM drive under
inverter excitation.

- In addition, the IPMSM core loss, copper loss, voltage-current harmonics, and inverter loss were
thoroughly evaluated. Mutual effects of the dead-time and control sample time at high switching
frequencies on the motor core loss and inverter loss were assessed. Physic-based insights and
explanations of the obtained results were also provided. Moreover, an isolated 2-phase buck-boost
converter was researched for improvement of DC-bus control in motor drives. Simulation models in
MATLAB and JVMAG were also designed for numerical analysis on the core loss and harmonics of IPMSM.
Ten related journal papers were published.
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1. BFEBRBEGOER

The pulse-width modulation (PWM) inverter can generate the variable voltage and frequency required
for the speed control of synchronous motor drive systems used in electric vehicles (EV) and mobile robots,
but its output waveforms are typically complex and include a lot of harmonics. In fact, the harmonic
components in motor currents, voltages and magnetic flux density are main reasons to increase the motor
core and copper losses. Moreover, if the carrier frequency of the PWM motor inverter is increased for
medium and high-speed modes, the inverter loss increases noticeably. To have the variable voltage, though
the pulse-amplitude modulation (PAM) inverter needs an additional DC-DC converter, that is included in
EV for the connection between the batteries and motor inverters, the PAM control can generate the simpler
output waveforms with the substantially smaller harmonics if the excitation angle is adjusted properly.

In most EV, the wheel is indirectly connected to a high-speed motor via a mechanical gearbox, and a
high-voltage DC-DC converter is usually used for the high-speed motor. In recent years, direct motor drives
(without a gearbox for the connection between the motor and wheel) and synchronous in-wheel motors
have been studied as potential solutions for EV and mobile robots in the future. The PAM inverter and
efficient control algorithms combining with an appropriate excitation angle scheme can be used in these
cases; as a result, the motor directly connected to or built in the wheel can be flexibly operated from low,
medium to high speeds with reductions in the motor core, copper, and inverter losses. Besides, the deadtime
of semiconductor devices, e.g. silicon insulated-gate bipolar transistor (Si-IGBT) or silicon carbide metal-
oxide-semiconductor field-effect transistor (SiC-MOSFET), used in the motor inverter was investigated to
have remarkable effects on the inverter loss, but detailed effects of the dead-time and control sample time
on the IPMSM copper and core losses have not yet been thoroughly considered in existing studies.

2. BIEOHK

To effectively reduce the core loss, copper loss and inverter loss of the interior permanent magnet
synchronous motor (IPMSM) drive system used in EV and mobile robots, this research proposal has
introduced a novel PAM control method with an automatic excitation angle scheme based on fuzzy logic
and twelve-step switching pattern. The proposed PAM method is also evaluated by finite element method
(FEM) and can be implemented in experimental IPMSM drive systems without large computational cost.

Furthermore, an adaptive algorithm is proposed for automatically searching and setting an appropriate
dead-time for the inverter in the [IPMSM drive to achieve the smallest possible values of the total harmonic
distortion (THD) of the motor current, which can help lower the motor core and copper losses. Besides, this
dead-time algorithm can be suitably combined with the PWM and PAM methods for motor drives.

3. WREDFHIE

I have designed a twelve-step switching pattern particularly suitable for the three-phase two-level
inverter used in the experimental IPMSM drive system with the PAM control technique. In addition, a
unique fuzzy logic controller (FLC) with the two inputs based on absolute values was proposed to
automatically fine-tune the excitation angle in the PAM-based inverter, where the number of association
rules of the FLC can be appropriately reduced for lowering the computational cost in implementation.

To clarify the reasons why the proposed PAM control has the smaller motor core and inverter losses
than the PWM method, the mathematical and FEM models for the IPMSM testbed are researched. First,
the control algorithms and IPMSM system are simulated in MATLAB; after that, the obtained motor current
and voltage are imported to the FEM model in JIMAG software for the calculation of the motor losses. The
measured motor current and voltage are also imported to the FEM model for further evaluation. Lastly, an
analytical model with consideration of mutual effects of the main components and operating conditions in
a SiC-based IPMSM drive system on the inverter loss properties is studied to validate the measured results.

As an outcome of this research project, 10 related papers were published in peer-reviewed journals.

4. MERE

(1) Novel PAM control with fuzzy-based automatic excitation angle for SiC-based motor drive

I have proposed an improved PAM method based on fuzzy control for an experimental IPMSM drive
system excited by the silicon carbide (SiC) inverter under load condition and various operating speeds. In
detail, an automatic scheme with a twelve-step switching pattern is developed for real-time searching the
optimal excitation angle of the SiC inverter under the PAM control method to minimize fluctuations of the
dg-axis currents of the IPMSM, where the step-size angle is adjusted automatically and appropriately by
the proposed FLC. With a novel design of the inputs and membership functions in the FLC based on
absolute values, the number of fuzzy association rules is significantly reduced to 16 for obtaining good
control performance with a small computational cost in implementation. As a result, the automatic angle
excitation scheme can reduce harmonics in the motor current in experiments, from which it helps to reduce



the motor core and copper losses. The THD values of the measured motor current and voltage are also
examined to validate the effectiveness of the proposed fuzzy-based PAM control in decreasing the IPMSM
losses and inverter loss. Furthermore, the operating speed of the IPMSM is changed from 100 rpm to 1000
rpm for careful evaluation. The obtained results show that the proposed PAM control with the fuzzy-based
automatic excitation angle scheme can decrease the losses in the SiC-based motor drive system. Moreover,
the fuzzy-based PAM control can be appropriately applied for other motor drives used in various fields.
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Step 2: The absolute average values of the motor current errors with the dg rotating frame in continuous
time, e;q qps(t) and ejq qps(t), are defined in (2) and (3), respectively.
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In normal, the fundamental electrical frequency f; of the experimental IPMSM can be calculated by
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where p is the number of pairs of poles (i.e., p = 4 in this study), npm is the measured velocity in rpm of
the IPMSM, and w is the motor angular velocity in rad/s. For stability in operation of the experimental
motor drive system, the second sample time 7 utilized for the designed automatic excitation angle scheme
based on fuzzy logic can be determined as ten times of the fundamental electrical period 7y of the motor.

For example, when 7, = 1000 rpm and p = 4, from (5) it can be computed as Tc2 = 150 ms (for the
excitation angle scheme), which is much larger than 7¢; = 0.1 ms (for the velocity control loop) as required.

The k-th absolute average values of the d-axis current error e;4 q5s and g-axis current error e;q gps 0of
the IPMSM in discrete time of T¢; can be calculated by (6) and (7), respectively. It is noted that the index j
corresponds to the fixed sample time 7¢; = 0.1 ms for the velocity control loop defined in Step 1, and the
index k corresponds to the other sample time 7¢; for the automatic excitation angle scheme (e.g., Tc2 = 150
ms when 1, = 1000 rpm).
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where Ns is a positive integer value determined according to the following formulas with the round function
in (8). For example, when 7¢; = 0.1 ms and 7c, = 150 ms, it is derived as Ng = 1500.

NS = round (TCZ/TC1) (8) ei,abs(k) = \/eizd_abs (k) + eizq_abs (k) (9)

From (6) and (7), the k-th absolute average value of the dg-axis current error e; 4p,s(k) of the motor in
the discrete time of T¢ is computed in (9).

In consideration of the decrease of the motor core and copper losses, the key goal of searching the
optimal excitation angle B, of the SIC-MOSFET inverter is to minimize e; 4p5(k) as possible, as

expressed in (10) and Fig. 2. B (k) = Bope, where e; gps(k) » min (10)
Step 3: The values of Ae; 4,5(k) and AB*(k) with the sample time of Tc; can be calculated in (11).
{Aei_abs (k) = €j_abs (k) — €i_abs (k - 1) 1
2B = B (k) — B (k = 1) (1n
For simplicity, the initial values in implementation are e; 4,5(k = 0) =0and B*(k = 0) =120°.
Step 4: In this step, the optimal excitation angle can be searched as described in Fig. 3, where A5(k) isa
changeable step size for adjusting the desired excitation angle (k). It is noted that A5(k) is automatically

tuned by the proposed 16-rule FLC depicted in Fig. 4, and its initial value is 45(k = 0) =0.
Step 5: For stability in operation, the desired excitation angle 5°(k) is limited as 120° < 8*(k) < 180°.
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(2) Adaptive dead-time algorithm for inverter to decrease motor current harmonics and losses

Similarly, to reduce harmonics in the IPMSM current, the main objective of seeking the best dead-
time of the inverter is to minimize the motor curent error ei(k) as possible, as shown in (12), Figs. 7 and
8, where Adei(k) = ei(k) - ei(k-1), and Ao = 0.25 ps is the step-size to adjust the desired dead-time B°(k).
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Fig. 7. Automatic search of best dead-time *
for inverter used in IPMSM drive.
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(3) Mutual effects of dead-time, control sample time and carrier frequency on losses in motor drive

I experimentally analyzed the core loss characteristics of an IPMSM excited by a SiC inverter with
the sinusoidal pulse-width modulation (PWM) and high modulation index of 1.1 considering the mutual
effects of the high carrier frequencies of up to 200 kHz, different dead-times of 250 and 1000 ns, control
sample times of 100—1000 ps, and stator temperature (see Figs. 9 and 10). The experimental [IPMSM drive
system is operated in load condition with a torque of 1.05 Nm and rotational velocity of 1500 rpm.
Furthermore, the ringing phenomenon and rise time in the motor voltage are measured and analyzed using
a high-resolution oscilloscope that has a superior sampling rate of up to 5 giga-samples per second, which
helps to thoroughly examine the impact of the SiC inverter excitation on the motor core loss. The relations
of the THD of the measured motor voltage and current and the distortions in the magnetic flux density to
the IPMSM core loss properties are also evaluated. Besides, the insights and explanations were provided.
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(4) Current harmonics mitigation with auto-tuning PD-fuzzy controller to reduce motor losses

In addition, I have introduced an auto-tuning proportional differential (PD) controller based on fuzzy
logic to considerably decrease the 5* and 7% current harmonics in the experimental IPMSM drive system
excited by a two-level SIC-MOSFET inverter. In the proposed control scheme, a unique 9-rule FLC was
designed to automatically and suitably adjust the four key coefficients of the four PD controllers for the 5%
and 7™ dg harmonic currents (i.e., Kigs, Kigs, Kiq7, and Kj47) according to various operating conditions
of the motor system in real time. Moreover, the PD-fuzzy control scheme was successfully implemented
without a large computational cost, where the control sample time is fast as 100 ps. The experimental
results with the SiC-based IPMSM drive system under a high switching frequency of 200 kHz in load
condition have confirmed the performance of the proposed PD-fuzzy controller in substantially reducing
the harmonics and THD of the IPMSM current as well as the motor copper loss and SiC inverter loss.
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