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Predicting When Crime Will Occur: Building a Methodology for Timely Crime
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In this study, | developed a method to accurately predict the timing of

crimes, an aspect that has been neglected in existing research. Specifically, I aimed to predict the
date of occurrence by integrating two factors: (1) the effects of time factors that can be
identified in advance (special days, days of the week, weather, events, etc.), and (2) fluctuations
due to the increased activity of motivated offenders. | evaluated the prediction performance of the
proposed method in Osaka City (vehicle theft and parts theft) and Seoul City (outdoor violence and
sex crimes). The results showed that the proposed method outperformed models that randomly select
days and models using existing machine learning methods. Furthermore, the prediction performance was
higher for sexual crimes than for simple violence, suggesting that the proposed method may be more
effective for crimes committed with clear criminal intent.
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Table 1

recall vO recall vl recall v2
Min. 0.000 0.000 0.000
Median  0.080 0.091 0.170
Mean 0.084 0.101 0.210
Max. 0.333 0.333 0.500
NA's 2 2 2

precision vO  precision vl  precision v2
Min. 0.000 0.000 0.000
Median 0.151 0.125 0.150
Mean 0.213 0221 0.235
Max. 0.811 0.923 0911
NA's 0 0 0

F1 vO F1vl F1v2
Min. 0.036 0.036 0.022
Median 0.131 0.129 0.148
Mean 0.122 0.126 0.150
Max. 0.226 0.261 0.281
NA's 10 8 4

Table 2
Model Performance (mean Smpleassault | Sexual offense
for 365 days)
Recall V1: by Time-variant Variables | 0.324 0.379
V2: V1 & Anomaly Detection | 0.332 0.401
Random Forest 0.309 0.286
Random Selection 0.177 0.197
Precision | V1: by Time-variant Variables | 0.477 0.084
V2: V1 & Anomaly Detection | 0.465 0.077
Random Forest 0.452 0.064
Random Selection 0.298 0.046
F1 V1: by Time-variant Variables | 0.383 0.139
V2: V1 & Anomaly Detection | 0.384 0.130
Random Forest 0.364 0.110
Random Selection 0.220 0.086
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