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Construction of material exploration system using automatic first-principles
calculation and multi-objective Bayesian optimiziation
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We have developed an autonomous materials screening method, aimed to
materials whose properties fall within a desirable range, utilizing machine learning. Test of the
performance of this method using a database in our laboratory indicates that this method performs
better than Bayesian optimization, which is widely used, unless target range is extreme.
Additionally, this method can be applied when searching for materials that satisfy multiple material

property criteria simultaneously. This was published In Science and Technology of Advanced
Materials: Methods in April 2022.

Furthermore, we developed a system for autonomous materials screening by combining this method with
high-throughput computing technology. Test of this system assumin% a search for high-k dielectric
materials indicates that the system identify target materials at five times the speed of random
high-throughput computing. We submitted a paper on these findings.
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