2021 2023

Scalable Hybrid-parallelism Design for Mega-Size Deep Learning Model

Scalable Hybrid-parallelism Design for Mega-Size Deep Learning Model

Nguyen, TRUONG

3,600,000

3D ( + + )
1/0

Our research helps to support the research and development of big models. It brings a
groundbreaking new solution with the requirements of the urgent Al, e.g.,ChatGPT. It can be
ultimately contributing to the advancement of Al models, particularly foundational models, in the
context of social 5.0.

We deal with memory capacity limitation when training a large model by
separating the model into multiple smaller parts (published a Q1 journal-TNSM23). We also found that
3D parallelism (datat+pipelinettensor) becomes standard in training large-scale Deep Learning with

large datasets. We proposed the methods to speed up this training process. To reduce the 1/0 time,
we use local shuffling along with a pair-wise data exchanging and a model exchanging to maintain the
accuracy of the model. We published 3 papers (IPDPS22a, CCGRID23, CANDAR23), a poster (HPCAsia24),
and achieved 2 best paper awards. To reduce the computing time, we eliminate to process the
non-important samples during the training (published at a A* conference - Neurips23). We reduce the
communication time by co-design network architecture and collective communication. We published 2
rank A paper (IPDPS22b, CCGRID24), a Q1 journal (JPDC23) and a poster (HPCAsia23).

High performance computing

Distributed Training Large Model Large dataset Large scale system



¥ X C—19,. F—19—1, 2—19 (58

1. WFEBAE SO &

Deep Learning (DL) proved their effectiveness in a variety of science and
engineering applications such as language processing, speech, and visual recognition.
Trends in DL show an increase in training dataset sizes as well as the introduction of
bigger/deeper models to improve accuracy. In addition, applying DL in new domains,
such as health care and scientific simulations, introduces bigger datasets and more
complex DNN models. Those trends make the DL processing computationally expensive for
a single compute node. Therefore, large-scale parallel training/inference on High-
Performance Computing (HPC) systems or clusters of GPUs is becoming increasingly common
to achieve faster training/inference time.

There are two prominent strategies for parallelizing DL training/inference: data
and model parallelism. Data parallelism duplicates the DL model and partitions the
dataset onto multiple processes, e.g., cores/GPUs. Each Processing Element (PE)
performs the forward and backward propagation for its local portion of data in
mini/micro batches to compute the local gradients of weights, iteratively. Next, all
the PEs have to share their local gradients to obtain the averaged global gradients
before the weight update phase, i.e., a collective Alleduce operation is performed
Model parallelism splits a DNN model across its depth or its width into composite
partitions, where each composite partition is assigned into one Processing Element
All the PEs process the same input data samples (in minibatch).

To efficiently deploy a DNN model in a large-scale distributed system, one of the
critical challenges are to figure out the optimal large—scale parallelization strategy
Practically, data parallelism becomes a common choice because it is simple and
sufficient. However, scaling data parallelism with a larger number of computing nodes,
e.g., 1000s of GPUs, can be limited by the large communication overhead for gradient
exchange among computing nodes at each iteration. In addition, with the explosive
increase of the size of datasets and the DL model (mega-size DL model)
training/inference DL has to deal with the memory capacity limits. A notable case is
in the area of language processing NLP at which models are increasingly approaching
0(100B) parameters (or weight), e.g., 175 billion in GPT-3. In the other hand, as the
sample size (in datasets) becomes bigger, e.g., higher dimension, higher resolution
images, etc., the memory capacity also limits the number of data samples (or minibatch
size) that can be map into GPUs to process. Hence, restricting the scaling of data
parallelism by both memory issue and communication overhead. In this context, model
parallelism could be a solution, yet there exists an upper limit on the number of PEs
for model parallelism when scaling. Thus, it restricts the parallelization and speed—
up degree.

2. WHEDOHBY

The objective of this research is to enable training/inference mega—size DL models
on large—scale distributed HPC systems in the magnitude of days. We aim at figuring
out the optimal large—scale parallelism strategies when deploying a given DL model on
an HPC system.

3. WD Ik

To address these above challenges, we consider several research topics includes:

e (A) Hybrid-parallelism design: study the limitation of different parallelism
strategies and find novel fine—grained hybrid parallelism strategies for each
type of specific applications

e (B) Method to reduce the training time:

o (B.1) Reduction of the I/0 time by optimizing the time of data movement
from storge system to the memory of the computing node.
o (B.2) Reduction of the computing time by eliminating non—important samples
during the training process
o (B.3) Reduction of communication time by a co-design between communication
algorithm and system architecture to mitigate the communication overhead.
4. BFFERA
A. Parallelism design

As mentioned, each of data and model parallelism strategies has its own limitations
In this project, we anticipate that hybrid parallelism strategies would have a central
role in the scaling of DL training, especially for mega—size DL model and scientific
simulations that more than often deal with high-resolution datasets. A hybrid




parallelism is a combination of two (or more) strategies. The hybrid parallelism
inherits the small memory requirement from model parallelism while breaking the scaling
limitation so that enable training/inference with a much larger parallelization and
speed-up degree. As more datasets from HPC start to be analyzed by DL frameworks, this
type of hybrid parallel strategies will become more and more relevant because data
parallelism will simply be not enough. Our work published in the Q1 journal (TNSM2023)
investigate the combination of data parallelism with the tensor parallelism. Tensor
parallelism is the common form of model parallelism which splits a DNN model across
its width. The result show that this 2-D hybrid parallelism (data + tensor) is effective
in term of accuracy. However, 2-D parallelism is not enough for recent big models,
e.g., which has trillions of parameters. In this context, 3-D parallelism (data +
pipeline + tensor) becomes the straightforward approaches. In which pipeline
parallelism is another form of model parallelism where the DNN models is spitted across
its depth. Figure 1 illustrates the combination of model parallelism (horizontally
split the DL model) model that is implemented on top of data parallelism. (data plus
model parallelism). In which, 4 GPUs are arranged into 2 groups of 2 GPUs. This hybrid
strategy implements the model parallelism inside each group and data parallelism
between groups

Data parallelism splits the Pipeline parallelism splits the DNN Tensor parallelism splits the DNN
dataset (input) model across its depth model across its width

| F(W,. input)
2N

§ N
Eﬁ mm1} S
2 N S0 @8 © 0k §91
t]

S 5
| F(w,. input)

|
Figure 1: Parallelism strategies for training a large Deep Learning model.

In the following, we study the methods to reduce the training/inference time for
this 3-D parallelism approach.
B. Method to reduce the training time.
B.1. Reduction of I/0 time

Distributing the training of a neural network in a data (and hybird) parallelism
fashion over compute nodes of a supercomputer requires loading the input samples on
compute nodes so that each node can process a subset of the samples at each training
epoch. This is either done by storing the entire dataset on computing node-local
storage, or by each node reading a subset of the samples from the parallel file system
(PFS). As datasets become larger, storing the entire dataset on local storage becomes
impossible since they exceed storage capacities. Similarly, reading from the parallel
files system puts enormous pressure on the storage nodes because many compute nodes
read terabytes of data simultaneously. Moreover, to improve generalization, distributed
neural network training shuffles the data at each epoch so that nodes can randomly
access input samples, which further increases the I/0 requirements of deep learning
applications.

In this context, an alternative way is to partition the dataset among computing
nodes, i.e., each node uses the same part of the dataset for all the epochs (known as
local shuffling). Our work published in IPDPS2022 (rank A conference) showed that the
local shuffling could not achieve similar validation accuracy as the default global
shuffling strategy in large—scale training. Thus, we proposed a novel partial-local
shuffling strategy that randomly exchanges only a proportion of the dataset among
computing nodes in each epoch. Through extensive experiments on up to 2,048 GPUs of
ABCI, the partial-local shuffling strategy then achieves similar accuracy as global
shuffling while only requiring storing up to 0.03% of the whole dataset (as shown in
Figure 2.a). In addition, for data sets that do not fit locally in the first place,
partial-local shuffling can improve accuracy compared to the local only access. This
opens the doors for leveraging the potential of locality in large scale training of



large datasets and addresses the DL I/0 challenge at its root: avoid I/0 when possible

However, exchanging the samples randomly between computing nodes leads to a
personalized all-to—all communication pattern which is sensitive to network congestion
when scaling up. In this context, we then propose an exchange strategy that is scalable
That is we avoid network congestion by managing the communication pattern in a pair-—
wise manner (instead of an all-to—all pattern). We pair the worker that holds the most
important sample with the worker that holds the least importance of samples, and so on
To reduce the overhead of computing the importance of samples in an epoch, we propose
to reuse the training losses in the previous epoch (lagging loss). Our proposed Partial
Shuffling has accuracy as good as the conventional global shuffling while achieving
training time as fast as local shuffling (Figure 2.b). We presented this work in the
HPCAsia2024 poster session.

ImageNet-1K (2048 GPUs) ImageNet-21K DeepCAM S'F/v?/ i
+
- 8 05 0.8 =] % GE+WU
® .| = 0.4 P o OIMPT
5 0.6 5 [_, 0.7 T Local [ EXCHANGE
] 03 | s o oca 51.00
g 04 4 — Giobal (7 :_Il,;mucapu; Global : . partial01 | W 284
2 0.2 o 1024 GPUs, Local 0.5 ; Configuration
® Local ’,’ 1024 GPUs, Partial-0.1| | —— 1024 PR Locy 1S-Pair-0.1 E 1.90
3 021 partiabod| 0.1 |[// ~-= 1048 GPL, Global 0.4 " e
= ’ . : - - 2048 GPUS, Local : . Pair-
s 0 ) —Partial0.3 0 2048GPUs, Partial03| 0.3 4 2560 AN AN OS) IL2gPeir0.1 jlm
Global 3.25
0 20 40 60 80 100 0 20 40 60 80 0 5 10 15 20 25 o5l R IV/////////

0 40 80 120
Average epoch time (s)

(a) Training accuracy at large scale (b) Training time (512GPUs)
Figure 2: Example result in research B. 1

Epoch number

Another alternative approach is to allow exchanging the models between computing
node before aggregating the model at the end of each epoch. This approach is presented
in CCGRID23 paper (Best paper award Finalist) and CANDAR23 paper (Best Paper Award).
B.2. Reduction of computation time

In this work, we propose a method for hiding the least—important samples during
the training of deep neural networks to increase efficiency, i.e., to reduce the cost
of training. We build our hypothesis on the following observations on the effect of
sample quality on training: (a) biased with-replacement sampling postulates that not
all samples are of the same importance and a biased, with-replacement sampling method
can lead to faster convergence and (b) data pruning methods show that when select
samples are pruned away from a dataset, the predication accuracy that can be achieved
by training from scratch using the pruned dataset is similar to that of the original
dataset. Our hypothesis is that if samples have a varying impact on the learning
process and their impact decreases as the training progresses, then we can in real-
time, adaptively, exclude samples with the least impact from the dataset during neural
network training

RESNET-50, ImageNet-1K 80 DeepCAM
80 | Dataset | Metrics | Baseline ISWR  FORGET SB KAKUR.
§ 50 Bt Eii o | Fractalsk | Loss | 326 3671 327 4.18 3.59
8 25% | Time (min) 623 719 533 414 529
340 a0 Impr. (+154%)  (-144%) (-335%)  (-15.1%)
Q
;20 — Baselne — KAKURENBO |54 — Baseline Down I CIFAR-10 ‘ f;:[;- ) ‘ 9308 ( +?)§7769j [%ﬁgﬁ) (_91141‘;: :+%s:>2£
2 — FORGET — ISWR — KAKURENBO | stream . i 82, ' =
ol — SB | o — ISWR l CIFAR-100 ‘ Acc. (%) ] 79.69 79.62 79.95 76.98 79.35
0 22000 44000 66000 88000 O 300 600 900 1200 1500 Diff. (-0.07) (+0.26)  (-2.71) (-0.34)
Seconds Seconds

Figure 3: Example result in research B. 2. (LEFT) Proposed method, KAKURENBO, reduces
up to 23% of total training time while maintaining the same accuracy. (RIGHT) Our
method is also useful in fine tuning the big model

Specifically, we dynamically hide samples in a dataset to reduce the total amount
of computing and the training time, while maintaining the accuracy level. Our proposal,
named KAKURENBO, is built upon two pillars. First, using combined information about
the loss and online estimation of the historical prediction confidence of input samples,
we adaptively exclude samples that contribute the least to the overall learning process
on a per—epoch basis. Second, in compensation for the decrease in the number of SGD
steps, we derive a method to dynamically adjust the learning rate and the upper limit
on the number of samples to hide to recover convergence rate and accuracy. We evaluate
performance both in terms of reduction in wall-clock time and degradation in accuracy.
Our main results are two—fold: first, we show that decaying datasets by eliminating
the samples with the least contribution to learning has no notable negative impact on



the accuracy and convergence and that the overhead of identifying and eliminating the
least important samples is negligible. Second, we show that decaying the dataset can
significantly reduce the total amount of computation needed for DNN training. We also
find that state—of—-the—art methods such as importance sampling algorithm, data pruning,
or sample hiding techniques performs poorly on large—-scale datasets. To the contrary,
our method can reduce training time by 10.4% and 22.4% on ImageNet—1K and DeepCAM,
respectively, impacting Top—1 accuracy only by 0.4% (as shown in Figure 3). Our work
published in Neurips2023 (rank A% conference)
B.3. Reduction of the communication time

Training a Deep Learning model on High—Performance Computing systems is becoming a
de—facto standard in deep learning. One of the key factors limiting the growth of
large—scale training is the collective communication overhead between computing nodes
or processing elements (PEs), e.g., an Allreduce operation of data parallelism and
tensor parallelism. With the continual increase in model sizes, e.g., 100s GB, and the
number of PEs, e.g., 1,000s of GPUs, communication becomes a major bottleneck. In this
context, we aim at finding a network topology and its corresponding collective algorithm
that features bandwidth optimality in 0(log(P)) steps with a minimal (or without)
network contention. We proposed the use of a family of network topologies that exploit
small-world network models, e.g, Distributed Loop Network (DLN) and collective
algorithms named Shifted Halving—Doubling (SHD) which improve the utilization of all
the inter—switches links of the DLN topology. We then generalize the SHD algorithm and
propose 2-D DLN which considers both the communication performance and the cost when
implemented in a server room. We published this work in HPCAsia2023

N Intraswitch links —— EFafTree_Ring DLN(7.8,2)_Ring m2-D DLN(4,4,4,2) Ring
o bength-| X-shorteut Inter-switch links Logical paths 3—4 FatTree_HD ©DLN(7.8.2)_HD ©2-D DLN(4.4.4,2)_HD
Z Length-2 X-shorteut DFalTree_SHD B DLN(7.8.2)_SHD D2-D DLN(4,4.4,2)_SHD|

0

097

—Length-2 Y-shortcut :::,11 :‘ :1-[..“:: WL 5‘;_ _C:;l r@-r' % "‘éﬁz\éj} .“'l 1:4 I
st [ S ]~ <
O 0O O OO

&
N . ; : 35
.2 4 oSSs32 S 1 ©
e A% s S T
o ° ° ° ° ° ° ° Message size (MB)

(a) Proposed 2D-DLN (b) lustration of our Shifted Halving-Doubling Allreduce (b) Normalized communication time of different [network]\_[allreduce algorithm]
network topology Algorithm. to those of FatTree\_Ring with 512 processing elements, e.g.. GPUs.

NI 1.0
R I
ORI 1.00

| R AR

T 1.00
rErmrrrrrErea 0.

Figure 4: Example result in research B. 3.

We also optimize the communication inside one computing node. We propose to use the
Kautz network for inter—-memory network using switchless OPTWEB FPGA and multi-port
collective communications to mitigate the influence of the startup latency on the
execution time. Based on our experimental results with OPTWEB of custom Stratix10 FPGA
cards, SimGrid simulation results show that our collective communication is 7x faster
than that of Dragonfly with 272 FPGAs. Our works are published in two conference papers
(IPDPS2022, CCGRID2024) and a Q1 journal (JPDC2023).



10 8 10 2

Nguyen Quan Pham Hieu H. Wong Kok-Seng Le Nguyen Phi Nguyen Truong Thao Do Minh N. 21

FedDCT: Federated Learning of Large Convolutional Neural Networks on Resource-Constrained 2024

Devices Using Divide and Collaborative Training

IEEE Transactions on Network and Service Management 418 436
DOl

10.1109/TNSM.2023.3314066

Pham Quang Ha Nguyen Nang Hung Nguyen Thanh Hung Pham Huy Hieu Nguyen Phi Le Nguyen Truong -

Thao

SEM: A Simple Yet Efficient Model-agnostic Local Training Mechanism to Tackle Data Sparsity and 2023

Scarcity in Federated Learning

Eleventh International Symposium on Computing and Networking (CANDAR) 120-126
DOl

10.1109/CANDAR60563.2023.00023

Truong Thao Nguyen, Balazs Gerofi, Edgar Josafat Martinez-Noriega, Francois Trahay, and Mohamed -

Wahib

KAKURENBO: Adaptively Hiding Samples in Deep Neural Network Training 2024

37th Conference on Neural Information Processing Systems (NeurlPS 2023) 1-23
DOl

Nguyen Quan Pham Hieu H. Wong Kok-Seng Le Nguyen Phi Nguyen Truong Thao Do Minh N. 21

FedDCT: Federated Learning of Large Convolutional Neural Networks on Resource-Constrained 2024

Devices Using Divide and Collaborative Training

IEEE Transactions on Network and Service Management 418 436

DOl
10.1109/TNSM.2023.3314066




Pham Quang Ha Nguyen Nang Hung Nguyen Thanh Hung Pham Huy Hieu Nguyen Phi Le Nguyen Truong
Thao

SEM: A Simple Yet Efficient Model-agnostic Local Training Mechanism to Tackle Data Sparsity and 2023
Scarcity in Federated Learning
Eleventh International Symposium on Computing and Networking (CANDAR) 120-126
DOl
10.1109/CANDAR60563.2023.00023
Kien Trung Pham, Thao Nguyen Truong and Michihiro Koibuchi -
A Bandwidth-Optimal All-to-All Communication in Two-Dimensional Fully Connected Network 2024
24th 1EEE/ACM International Symposium on Cluster, Cloud and Internet Computing 1-7
DOl
10.1109/CCGrid59990.2024.00010
Truong Thao Nguyen, Kien Trung Pham, Hiroshi Yamaguchi, Yutaka Urino, Michihiro Koibuchi -
Effective Switchless Inter-FPGA Memory Networks 2023
Journal of Parallel and Distributed Computing -
DOl
Nang Hung Nguyen, Duc Long Nguyen, Trong Bang Nguyen, Thanh-Hung Nguyen, Hieu Pham, Truong Thao -
Nguyen, Phi Le Nguyen
CADIS: Handling Cluster-skewed Non-11D Data in Federated Learning with Clustered Aggregation 2023
and Knowledge Distilled Regularization
23rd IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing 249-261

DOl




Truong Thao Nguyen, Francois Trahay, Jens Domke, Aleksandr Drozd, Emil Vatai, Jianwei Liao, 0
Mohamed Wahib, Balazs Gerofi
Why Globally Re-shuffle? Revisiting Data Shuffling in Large Scale Deep Learning 2022
36th IEEE International Parallel & Distributed Processing Symposium 1-12
DOI
Kien Trung Pham, Truong Thao Nguyen, Hiroshi Yamaguchi, Yutaka Urino, Michihiro Koibuchi 0
Scalable Low-Latency Inter-FPGA Networks 2022
36th IEEE International Parallel & Distributed Processing Symposium 1-12
DOI
2 0 2

Truong Thao Nguyen, Yusuke Tanimura

Efficient Sample Exchanging for Large-Scale Training Distributed Deep Learning with Local Sampling

International Conference on High Performance Computing in Asia-Pacific Region 2024

2024

Truong Thao Nguyen, Peng Chen, Yusuke Tanimura

Efficient Allreduce Algorithm for Large-Scale Deep Learning on Distributed Loop Networks

International Conference on High Performance Computing in Asia-Pacific Region 2023

2023




We achieved 2 paper awards including CCGRID23-Best Paper Finalists Award (https://ccgrid2023.iisc.ac.in/awards/) and CANDAR23-Best paper Award
(https://is-candar.org/candar23/best_outstanding_papers)

He used ABCI points (managed by PI) for
experiments of DeepCAM models/dataset in our
IPDPS22 paper.

(GEROFI BALAZS)




