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My research provides insights on understanding how driver interacts with haptic shared control
system. Moreover, by designing a shared control system, my research helps to raise people’ s
motivation and ability to move that would expand their life space by improving driving safety and
comfort.

This research focuses on driver-automation mutual adaptation and the
development of haptic shared control systems for enhanced automated driving experiences. At the
beginning of the project, a robust lateral control model for human drivers was established,
demonstrating superior accuracy in identifying driver behavior. After that, A steering assistance
system involving a shared control strategy was developed for driver override in automated vehicles.
The system considers the potential driver demand for override when the vehicle initiates a fail-safe

maneuver. A shared control strategy based on driver controllability is adopted to smoothly transfer
driving authority when the vehicle is out of danger. Furthermore, novel driving simulator studies
were conducted to test mutual adaptive shared control systems with updated trust values, showcasing
improvements in lane-keeping performance and user satisfaction.
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The development of automation is advancing rapidly, but it doesn't mean humans will be replaced.
Instead, humans are increasingly required to interact with automation in various complex systems such as
aircraft, automobiles, manufacturing plants, homes, and hospitals. This field of study, known as human-
automation interaction, covers taxonomies and qualitative models, analysis of automation-related accidents,
adaptive automation design, and social, political, and ethical concerns. Adaptive automation, proposed to
enhance human-automation cooperation, involves dynamic control shifting between humans and machines
based on factors like workload, performance, and environmental conditions. This control shifting can
happen through sharing or trading control, where either the human or automation system takes
responsibility for functions, or they collaborate simultaneously.

Automated driving, a major focus, necessitates understanding and improving driver-automation
interaction for real-world driving scenarios. To prevent confusion and ensure user-friendly designs across
vehicle models, interfaces should be intuitive and have a high level of consistency. Haptic shared control,
allowing drivers to feel and interact with automation through physical feedback, has been explored as an
effective approach, akin to the horse-rider relationship where mutual learning and adaptation occur. Hence,
this research proposal aims to investigate and model driver-automation mutual adaptation, aiming to design
a mutually adaptive shared control system for cooperative driving tasks.
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This research aims to investigate and model driver-automation mutual adaptation, aiming to design a
mutually adaptive shared control system for cooperative driving tasks.
(1) Understand and model driver adaptive behavior under haptic shared control
(2) Propose a fail-safe system involving shared control strategy with adaption to driver override behavior
(3) Propose a novel data-driven shared control paradigm based on mutual adaption for system with
unknown dynamics
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A framework for driver-
automation shared control with
mutual adaptation is depicted in
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control the steering wheel.

Meanwhile, the automation I%I"—
system (i.e.’ the haptic guidance Sensor  Controller  Actuator
steering system, which includes . Hapticguidance system
sensors, a controller, and an

actuator, as shown in the figure)
provides assistive torque on the
steering wheel.

Our experiment was
conducted using a driving
simulator with a Logitech
Driving Force GT steering
wheel, along with throttle and
brake pedals, as shown in
Figure 2. Regarding the
specific settings of the external
input device, the steering wheel
has a rotation angle range of
900 degrees. The resistance
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Figure 1. Schematic diagram of shared control
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Figure 2. The desktop driving simulator and settings.



and gain of the steering wheel can be set from
0 to 100. The resistance value adjusts the
effort required to turn the steering wheel,
while the gain value adjusts the strength of the
force feedback effects. In the experiment, the
resistance was set to 15 and the gain was set
to 80 using pyLinuxWheel, a graphical
program in GTK3 for configuring Logitech
steering wheels in Linux.

Our experiments were also conducted in a
high-fidelity driving simulator equipped with
an actual haptic shared control system, a 140°
field-of-view screen, a moving platform, a
steering wheel, and pedals for braking and
acceleration, as shown in Figure 3. The
moving platform, which has six degrees of

Figure 3. The high-fidelity driving simulator

freedom, was used to simulate the experience of driving on an actual road. The brake and accelerator pedals
were used to control the longitudinal speed of the simulated vehicles.
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(1) Driver modelling to predict distracted driver behavior under shared control

To understand driver adaptive behavior under
haptic shared control, a gated recurrent unit (GRU)
network was developed to model the lateral control
behavior of distracted drivers during driving.
Eighteen participants, with an average age of 23.5
years, were recruited for the experiments. All
participants held a Japanese driver's license and had
an average driving experience of 2.7 years. The
experiments were approved by the Office for Life
Science Research Ethics and Safety at The University
of Tokyo. Each participant performed a double lane
change driving task with 3.6-meter-wide lanes.

Four modeling methods were used as benchmarks
to evaluate the performance of the GRU network.
These benchmarks included a state-of-the-art LSTM
network, a backpropagation (BP) network, an extreme
learning machine (ELM), and a traditional two-point
visual model with neuromuscular dynamics
(TV_NM). Data from the high-fidelity driving
simulator experiments was divided into a training set
and a test set: data from twelve participants was used
for training, while data from the remaining six
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participants was used for testing the
GRU, LSTM, BP, and ELM networks.
The results indicate that the GRU
network has superior identification
accuracy compared to the LSTM
network, BP network, ELM, and
TV_NM method. Figure 4 illustrates
the identification results of input
torque for Driver 17 under the HGT-
Constant condition as an example.
The proposed GRU network
significantly reduced the
identification error compared to the
LSTM, BP, and ELM networks.
Figure 5 presents the RMSE, MAE,
MPAE, and R? of the driver input
torque. The GRU  network
outperforms the BP network, ELM



network, and TV_NM modeling methods across all these metrics. Additionally, both the GRU and LSTM
networks perform significantly better than the BP network, ELM network, and TV_NM model. While the
BP and ELM networks show a notable tendency to perform better than the TV. NM model, there is no
significant difference between the BP and ELM modeling methods in terms of RMSE, MAE, MPAE, and
RZ.

(2) Developing a fail-safe system involving shared control strategy with adaption to driver override

behavior

A fail-safe architecture was developed for the
vehicle behavior and motion planning module, 10 .
. . . . 20 Km. o |
incorporating shared control in response to driver . Emovehice  ®—  O— W
intervention. This method estimates the driver's Eom  bkmh
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intention to collaborate on maneuver selection and _ .S
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planner with composite planning horizons, the system

ensures the driver can safely take over control. As Figure 6. An illustration of the fail-safe test
shown in Figure 6, a critical scenario is created on a 3-

lane straight road to test a fail-safe system's response

to an intentional emergency event, involving lane changes, vehicle speeds, and a malfunction triggering
driver intervention.

When the system's chosen Maneuver Recommendation Module (MRM) aligns with the driver's intent,
the driver typically regains control of the vehicle swiftly, with minimal distraction from the fail-safe system.
The proposed system aims to intervene appropriately to correct the driver's erroneous behaviors when they
execute a conflicting MRM. Figure 7 depicts the system's response to a panicked driver in a test scenario,
wherein the system curtails unsafe acceleration but aids in completing a lane change correctly.

When the system's MRM choice diverges from the driver's intention, the system may reclaim control if
the vehicle veers off its target under the driver's control. The heightened rate of control reclamation partly
stems from this intention mismatch. Mismatched MRM selection typically arises from either the system
misinterpreting the driver's intent or the driver's MRM failing to ensure a safe stop from the system's
perspective. Regardless of the cause, the proposed system mitigates interference by resuming control when
a safe stop is feasible. Figure 8 illustrates the vehicle's trajectory and state when the fail-safe system
misinterprets the driver's intent to change lanes to the right. In such cases, the system overrides the driver's
action and executes a fail-safe maneuver to halt the vehicle safely in the middle lane. Prioritizing a safe
stop as the Maximum Restraint Control (MRC) strategy enhances safety during system-human conflicts.
While prioritizing safety leads the system to halt the vehicle safely, it may diminish the driver's satisfaction
with decision-making and erode trust in fail-safe systems.
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(3) Developing a novel data-driven shared control paradigm based on mutual adaption for system with
unknown dynamics

As shown in Figure 9, a trust- Offiine computation
. Real-time computation

based  data-driven  shared Dme,mm,w
control  strategy  integrates i Shared controller T :
driver and automation inputs Visust inforestion : Autonomous agent
through weighted summation, Ve “ x| VehicleModel ___ Optimal Control
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automation and a hybrid human- i Driverinput intention i .
to-machine trust model for Xoug  Orivermodel ' o 12 SharedControl iu

(Online Koopman EDMD) u=2Aug+(1-2u,

adaptive control allocation, e e e
demonstrated in interactive r— .., —
simulations where driver inputs
inform an assistant controller
for generating system control Figure 9. Schematic diagram of shared control with mutual adaption
commands.In the experiment,
Participants are asked to keep as close to the centerline of the route as possible under four control modes:

- User only control/ fully manual control (Usr)

- Trust based data-driven shared control (Tsc)

- Shared control with low level of automation when u = 0.8u,; + 0.2u, (Lsc)

- Highly automated shared control where u = 0.2u; + 0.8u, (Hsc)

From the failure rate results in Table 1, it's evident that all shared control modes improve safety compared

to user-only control, with highly automated shared control
showing the best performance. Trust-based shared control exhibits ~ Table 1. Results of failure rate
fewer failures than lowly automated shared control but falls short
of highly automated shared control. Table 2 highlights that trust-
based data-driven shared control has the highest consistency ratio,
slightly surpassing highly automated shared control and
significantly outperforming lowly automated shared
control. Additionally, the resistance ratio and contradiction Table 2. Results of collaborative behavior
ratio of Tsc are superior to Hsc, despite Tsc's average A

A: control authority alloction weight, u,: autonomous control input, u: system control input

Usc Tsc Hsc Lsc

30.6% |9.72% [6.94% |5.55%

value of 0.256 being lower than Hsc's constant A value of Metrics Tae Hsc Lac
0.3, suggesting that adaptive authority allocation enhances Consistency ratio | 0472 | 0.444 [ 0.261
: . . - Resistance ratio | 0131 | 0150 | 0.388

human-machine collaboration. Comparing contradiction EAlSLANCE TAkD.
Contradiction ratio | 0.358 0.371 0.316

ratios among the three shared control modes reveals
Lsc<Tsc<Hsc, indicating that lowly automated shared
control benefits from a consistent contradiction ratio, aligning with experimental findings where drivers'
increased authority reduces system-induced frustration.

Figure 10 compares the cross-track error of four shared control modes, revealing that the average cross-
track error follows the order Lsc<Hsc<Tsc. However, upon closer inspection, the distribution of Tsc appears
the most concentrated, followed by Hsc, while Lsc exhibits the sparsest distribution. This suggests that
trust-based shared control generally achieves better lane-keeping performance with minimal cross-track
error, although an analysis of the raw dataset reveals that Tsc has significantly more instances of extremely
large values compared to Hsc and Lsc. This phenomenon can be attributed to frequent system oscillations
when large deviations from the desired trajectory occur under the Tsc mode.

Participants were asked to complete a questionnaire regarding their subjective workload. The results in
Figure 11 indicate that all three shared control modes contribute to reducing driver workload. Specifically,
Hsc demonstrates the most effective reduction in driver workload overall. However, Tsc does not perform
well in reducing driver workload.
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