科学研究費助成事業

研究成果報告書

6 月 1 1 日現在 今和 6 年

機関番号: 13901
研究種目:挑戦的研究(萌芽)
研究期間: 2021 ~ 2023
課題番号: 21 K 1 8 7 7 9
研究課題名(和文)極低温マイクロジェット/トランスピレーション冷却による熱防護の革新
平空理题夕(茶文)Cryogonic microiot/transpiration cooling for roontry hoat shield
研究課題者(英文) Gryogen C microjet/ transpiration cooring for reentry heat shield
研究代表者
杵淵 紀世志(Kinefuchi, Kiyoshi)
名古屋大学・工学研究科・准教授
研究者番号:90648502
交付決定額(研究期間全体):(直接経費) 4,900,000円

研究成果の概要(和文):本研究では,完全再使用宇宙輸送機の主要課題である再突入時の熱防護に関し,従来 の耐熱材料に替えて推進剤として搭載される極低温の液体水素等を用いた流体冷却を提案する.高い冷却効率が 期待される内部濡れ面積の大きなマイクロ流路を採用するが,微細流路により表面張力が卓越し,蒸気膜成長に より冷却効率が低下する.そこで液体ジェットを加熱面へ衝突させ,蒸気膜の除去を促す方式を発案した.基礎 実験を通し,We数に基づく蒸気膜除去の条件を見出した.これを基に実際を模擬した供試体を金属積層造形にて 製作し,液体窒素を用いた冷却実験を行った.疑多孔質と比較し,提案するマイクロジェットは冷却時間が半減 することを確認した.

研究成果の学術的意義や社会的意義 従来の多孔質材に対する提案するマイクロジェット方式の優位性の実証を通し,未だ実現されていない宇宙輸送 機の「完全」再使用への貢献の可能性を示すことができた.また,ロケットエンジン等の過酷な熱流束に曝され る機器の熱防護にも応用できる.例えばタービン翼の冷却等に採用することにより,発電効率の向上,脱炭素へ の貢献も期待される.

研究成果の概要(英文): In this study, regarding thermal protection during re-entry, which is a major issue for reusable space transportation systems, we propose fluid cooling using cryogenic liquids such as liquid hydrogen carried as propellants, instead of conventional heat-resistant materials. We adopt microchannels with a large internal wetted surface area, which are expected to have high cooling efficiency. However, due to the small channels, surface tension may dominate, and vapor film growth may reduce cooling efficiency. Therefore, we devised a method of impinging liquid jets onto the heated surface to promote the removal of vapor films. Through fundamental experiments, we found conditions for vapor film removal based on the Weber number. Based on this, we additively fabricated a metal test module and conducted a cooling experiment using liquid nitrogen. Compared to quasi porous structure, we confirmed that the proposed microjets halved the cooling time under large We number conditions.

研究分野: 航空宇宙工学

キーワード: 極低温流体 気液二相流 再突入 宇宙輸送

科研費による研究は、研究者の自覚と責任において実施するものです。そのため、研究の実施や研究成果の公表等に ついては、国の要請等に基づくものではなく、その研究成果に関する見解や責任は、研究者個人に帰属します。

1. 研究開始当初の背景

再使用宇宙輸送機の代表例であっ たスペースシャトルは,地球帰還時の 再突入における空力加熱からの機体 の熱防護に関する課題を理由の一つ として 2011 年に退役した.すなわち 次世代の完全再使用の宇宙輸送機は, 熱防護の革新なくして実現し得ない. 本研究では,従来の信頼性の低い無冷 却の耐熱材を廃し,宇宙輸送機に燃料

図1 マイクロジェットによる高温構造体冷却

として搭載される極低温の液体水素等を利用した流体冷却を提案する.

本研究では、図1に示すようなマイクロ流路によるジェット生成をベースとした再突入 時の新たな機体冷却法を採用する.高い冷却効率が期待される内部表面積(濡れ面積)の大 きなマイクロ流路を採用するが、蒸発潜熱による冷却増進が期待される一方、微細流路によ り表面張力が卓越し、加熱面が蒸気膜に覆われ膜沸騰状態が維持されることにより冷却効 率が低下する可能性がある.研究代表者らによる微小重力下の表面張力支配の流れにおけ る知見から、液体ジェットを加熱面へ衝突させ、慣性力により蒸気膜の除去・核沸騰遷移を 促すことで高い冷却効率を達成する方式を発案した.

2. 研究の目的

まず着色水と窒素ガスによって沸騰を模擬した図 1 の一区画を切り出した模擬実験を通 し、気膜除去の条件を見出す.着色水の利用によって、画像処理によって気膜の除去を定量 的に評価することができる.同様の供試体にて低沸点流体を用い沸騰の影響を評価する.最 終的に図 1 のマイクロジェットアレイを有する供試体を金属積層造形により製作し、液体 窒素実験を通し、マイクロジェットの効果を明らかにする.

3. 研究の方法

3.1.水・窒素ガスを用いた実験

図2に供試体と実験装置を示す.供試体は図1の 一区画を切り出したものとなっている.写真下から 水が流入し,ノズルを通してジェットを形成する. 赤線の模擬冷却面から沸騰を模擬して窒素ガスが3 つの孔から流入する.表1に示す9種類の供試体を 製作した.図2のChannel length はいずれも5mm と した.水ジェットと窒素ガスの膜が干渉する様子を 着色水を用いて撮影し,画像勝利を通しこれを定量 化し,ジェットによる窒素ガスの気膜除去の条件を 探る.

表1 水・窒素ガス供試体の諸元

	Nozzle	Nozzle
	pitch	width
No. 1	16	2
No. 2	16	1
No. 3	16	0.5
No. 4	22	2
No. 5	22	1
No. 6	22	0.5
No. 7	32	2
No. 8	32	1
No. 9	32	0.5

図2 水・窒素ガスを用いた実験における供試体と実験装置

3. 2. 低沸点流体沸騰実験

水・窒素ガスにおける沸騰模擬の妥当性評価を主目的として,図2と概ね同等の供試体・ 実験装置にて,低沸点流体(Novec7100,大気圧沸点 61℃)を用いた沸騰実験も実施した. 本実験では,図2の模擬冷却面のみをアルミ合金で製作し,実際に120℃まで加熱し,そこ に室温の液体のNovecジェットを衝突させ,蒸気膜の変化の様子を撮影した.

3. 3. 液体窒素実験

図3に示す供試体を三次元積層造形により製作した.供試体①は図1に示した本研究で 提案するマイクロジェット供試体である.本マイクロジェット供試体はWeber数(後述)が 水試験と同等となるよう設計している.すなわち,表面張力の大きい水を想定した図2の供 試体に対し,表面張力の小さい液体窒素を想定した本供試体はスケールが小さくなり,ノズ ル幅は0.4mmとなっている.マイクロジェット供試体に加え,比較対象として多孔質材を 模した供試体②も製作した.横並びで評価するために,これら2つの供試体の空隙率,内部 流路濡れ面積は同一としている.常温のこれらの供試体に同一流量の液体窒素を流入させ, 各供試体の温度低下状況から冷却効率の優劣を議論する.

図3 マイクロジェット供試体(供試体①)と疑多孔質供試体(供試体②)

- 4. 研究成果
- 4. 1. 水・窒素ガスを用いた実験

図4 に着色水と窒素ガスを用いた実験に結果の一例を示す. 模擬冷却面上(図2の赤線)

部)の RGB の R 値を抽出することで,気膜の除去の可否を定量化できることを確認した. 左図の a,b,c,d は右図の写真 a,b,c,d に対応している.右図の通り, a,d では気膜は除去されて おり, b,c では気膜が残存している.対応する左図の R 値との関係が確認できる.

図4 画像処理によるR値の抽出結果と対応する気膜の状況

図5に接液率(図4から求まる模擬冷却面と水との接触割合:0は完全に気膜に覆われ, 1は完全に水にぬれていることを表す)とWe数(水ジェットの慣性力と表面張力の比)の 関係を示す.We数は以下の式から計算した.

We = $\frac{(慣性力)}{(表面張力)} = \frac{\rho L_1 L_2 V^2}{2\sigma(L_1 + L_3)}$ ここで ρ は密度, σ は表面張力,Vはジ ェット流速,供試体寸法 L_1, L_2, L_3 は図 6 に示す通りである.図5からノズル のサイズに関わらず,We>0.1にて接 触率が上昇,すなわち気膜を除去で きていることがわかる.これはWe数 により気膜の除去を統一的に評価で きる可能性を示唆している.なお,こ の結果は窒素ガスの流量に依らず同

等であった.

実際の設計おいては、定流量を図1の冷 却構造に流入させた場合、ノズル幅を一定 でノズルピッチ (ノズル同士の間隔)を拡 げると、ノズルーつあたりの流量が上昇す るため、We数も上昇する.一方で、液体 と接触する流路内濡れ面積は減少する.こ のようなトレードオフの関係が図 7 から 見出されるが、We>0.1 という気膜除去条 件から、実際の設計においては We=0.1 が 気膜除去を達成する濡れ面積最大の最適 点となる設計指針が示された.

4. 2. 低沸点流体沸騰実験

図8にNovecを用いた沸騰実験結果を示す.着色が困難なため,画像より蒸気膜の除去の可否を判断した.図8から,We>0.08以上で気膜が除去できていることがわかる.水・窒素ガスの実験と概ね同等であり,We>0.1程度が気膜除去の条件と考えられる.

4.3.液体窒素実験

図 9 に液体窒素実験における供試体①及び②の冷却状況を示す. 左は液体窒素流量 250cc/min, 右が 300cc/min の結果である. 縦軸の温度は供試体表面温度 6 点の平均値である. 250cc/min では両者の冷却速度に大きな差異はない. 一方, 300cc/min では供試体①(マイクロジェット)の方が,供試体②(疑多孔質)より液温 77K に到達するまでの時刻が半分程度に短縮されている. 前述の通り, これら 2 つの供試体の空隙率, 内部流路濡れ面積は同一としてあることから, マイクロジェットによる気膜除去の効果により冷却が促進されたと推察される.

供試体①の We 数は, 250cc/min で約 0.16, 300cc/min で 0.236 である.水, Novec で得ら れた We>0.1 の条件を 250cc/min でも満足しているが,明確な疑多孔質体との差異は認めら れなかった.要因の一つとして,水試験よりスケールが小さくなっているため,積層造形に 伴う表面粗さの影響が相対的に大きくなった可能性が考えられる.

図 9 液体窒素実験における供試体①②の冷却状況(左: 250cc/min,右: 300cc/min)

5.主な発表論文等

〔雑誌論文〕 計3件(うち査読付論文 3件/うち国際共著 0件/うちオープンアクセス 0件)

1.著者名 Kinefuchi Kiyoshi、Miyakita Takeshi、Umemura Yutaka、Nakajima Jun、Koga Masaru	4.
2.論文標題	5.発行年
Cooling system optimization of cryogenic propellant storage on lunar surface	2022年
3.雑誌名	6.最初と最後の頁
Cryogenics	103494 ~ 103494
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
10.1016/j.cryogenics.2022.103494	有
「オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-

	4.舂
FUKUZAKI Toshiya、KINEFUCHI Kiyoshi、UMEMURA Yutaka、OKITA Koichi、SAKAI Hitoshi	10
2.論文標題	5 . 発行年
Comparison of vapor cooling characteristics of a triply periodic minimal surface and other	2023年
channel geometries	
3. 雑誌名	6.最初と最後の頁
Mechanical Engineering Journal	1-13
掲載論文のDOI(デジタルオプジェクト識別子)	査読の有無
10.1299/mei.23-00015	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-

1.著者名	4.巻
Banno Yuya、Kinefuchi Kiyoshi	-
2.論文標題	5 . 発行年
Onboard Cryogenic Liquid–Propellant Subcooler Based on Thermodynamic Vent for Upper–Stage	2024年
Propulsion System	
3.雑誌名	6.最初と最後の頁
Journal of Spacecraft and Rockets	1~11
掲載論文のDOI(デジタルオプジェクト識別子)	査読の有無
10.2514/1.A35888	有
「オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-

〔学会発表〕 計4件(うち招待講演 0件 / うち国際学会 1件) 1.発表者名

近藤奨一郎, 別府玲緒, 杵淵紀世志, 梅村悠, 小林弘明

2.発表標題

極低温マイクロジェット/トランスピレーションによる熱防護の最適設計

3 . 学会等名

宇宙科学技術連合講演会

4.発表年

2022年

1.発表者名

別府玲緒,米田景,近藤奨一郎,杵淵紀世志,梅村悠,小林弘明

2 . 発表標題

極低温マイクロジェット冷却による再突入熱防護の模擬実験

宇宙科学技術連合講演会

4 . 発表年 2023年

1.発表者名

別府玲緒,米田景,杵淵紀世志,梅村悠,小林弘明,酒井仁史,樋口官男

2.発表標題

再突入熱防護に向けた極低温液体マイクロジェット冷却の性能評価

3.学会等名

宇宙輸送シンポジウム

4 . 発表年 2024年

1.発表者名

Kiyoshi Kinefuchi, Yuya Banno,

2.発表標題

Onboard Cryogenic Propellant Subcooler for Launch Vehicles Using Joule-Thomson Device

3 . 学会等名

CEC-ICMC 2023, 27th International Cryogenic Engineering Conference and International Cryogenic Materials Conference(国際学会) 4.発表年

2023年

〔図書〕 計0件

〔産業財産権〕

〔その他〕

6.研究組織

	氏名 (ローマ字氏名) (研究者番号)	所属研究機関・部局・職 (機関番号)	備考
研究協力者	梅村 悠 (Umemura Yutaka)	国立研究開発法人宇宙航空研究開発機構・宇宙科学研究所 (82645)	

6	. 研究組織(つづき)		
	氏名 (ローマ字氏名) (研究者番号)	所属研究機関・部局・職 (機関番号)	備考
	小林 弘明	国立研究開発法人宇宙航空研究開発機構・研究開発部門	
研究協力者	(Kobayashi Hiroaki)	(82645)	

7.科研費を使用して開催した国際研究集会

〔国際研究集会〕 計0件

8.本研究に関連して実施した国際共同研究の実施状況

共同研究相手国	相手方研究機関
---------	---------