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Many colleges use Al-powered early warning systems (EWS) to provide support
to students as soon as they start their first semester. But there are concerns about whether an

algorithm underlying the EWS technology can make fair and unbiased decisions so early in a student"s
college experience. To examine the algorithm™s fairness, we developed a machine learning algorithm
that predicts first-term college GPAs by using data from a mid-sized Japanese private university.
Our research offers two major findings. Firstly, deploying EWS during the initial phase of the first
semester may lead the algorithm to make discriminatory decisions. Secondly, achieving algorithm
fairness in a statistical sense does not necessarily lead to fair education outcomes.
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