研究成果報告書 科学研究費助成事業

交付決定額(研究期間全体):(直接経費) 2,300,000円

研究成果の概要(和文):本研究では,スーパー台風襲来時の洪水・強風同時発生時の河川洪水流の水理特性の 解明を行った.風が洪水流に及ぼす影響を精緻に評価するために,理想的な仮想水路と実河道を対象に,河川自 流方向に対して順風・逆風・横断方向の風が作用した場合における吹送流の発達や吹き寄せに関する三次元流動 計算を行った.実河道において,現況の風でも流速および水位に影響を及ぼし,さらに,風速なりたよって増 水期に生じた水位上昇が水面波として伝播し、洪水ピーク時まで影響を残す可能性が示唆された。

研究成果の学術的意義や社会的意義 気候変動の影響予測は水工学における重要なテーマの一つである.将来の洪水氾濫リスクを評価する研究では, 降水量の増大はモデル上流端流量の増大として,河口部における気圧低下や風の作用はモデル下流端水位(潮 位)の上昇として,境界条件を見直す形で考慮されているが,河川水表面への風応力の作用について考慮した研 究例はない.すなわち,既往研究では風影響を無視しており,気候変動影響下における風の取扱いの妥当性には 自ずと疑問が生じる.本研究では,洪水流と暴風の同時生起を想定した三次元流動計算を行うことで,風が流動 に与える影響を定量的に評価した.その結果は,今後の河川流計算における風影響の考慮の重要性を示唆した.

研究成果の概要(英文):This study investigated the hydraulic characteristics of river flood flows during the simultaneous occurrence of flooding and strong winds during a super-typhoon attack. To accurately evaluate the effects of wind on flood flows, three-dimensional flow simulations were performed for an ideal channel and an actual river channel. The analysis focused on the development of the drift current and the increase in water level in several wind conditions; forward, headwind, and crosswind in the direction of the river's own flow. In the actual river, the results indicate that the wind influences the flow velocity and the water level, and that the increase in water level caused by the wind during the rising stage could propagate as surface waves and remain until the peak of the flood.

研究分野:水工学

キーワード: スーパー台風 気候変動 氾濫リスク 三次元河川流計算モデル 吹送流 風影響

1版

科研費による研究は、研究者の自覚と責任において実施するものです。そのため、研究の実施や研究成果の公表等に ついては、国の要請等に基づくものではなく、その研究成果に関する見解や責任は、研究者個人に帰属します。

1. 研究開始当初の背景

令和元年に千葉県を中心に大規模な風害を発生させた台風 15 号(令和元年房総半島台風)や,千曲川の堤 防決壊・大規模氾濫を発生させた台風 19 号(令和元年東日本台風)は記憶に新しい.これらを上回る規模の スーパー台風は広域かつ高強度の雨域と暴風域を有し,河川流域に多量の降雨と長時間の暴風をもたらす. 従来規模の台風では流出時間差により洪水と暴風の同時生起は注視されていなかったが,スーパー台風では 同時生起のリスクが有る.河川水面上を風が吹き抜けると,水面に風応力が作用し吹送流が発生するが,風 が水面上を吹き抜けながら風応力を作用させる距離(吹送距離)の長短が吹送流の発達に影響する.このよ うな大気が水に与える影響,あるいは相互作用は海洋分野において重要視され,大気-海洋結合モデルとし て認知・普及している.これは,海洋では吹送流が発達するために必要な吹送距離を十分に有し,風が重要 な駆動力となるためである.一方で,河川では地形の影響が無視できず吹送距離が制限されるため,これま で風の影響は殆ど無視されてきた.

しかし、申請者がこれまで流量観測を目的に実施してきた水表面流速観測結果から、河川における吹送流 の発生は明白である.スーパー台風での暴風・洪水同時生起条件下では、風が河川洪水流に影響を及ぼし、 水理特性に変化が生じる事が予想される.しかしながら、その際の吹送流の時空間発展過程や水面勾配につ いては、十分な知見がない状況である.気候変動以前の河川計画論では、計画流量を計画高水位(HWL)以 下で流下させるための河道改修を行った上で、風の影響は HWL〜堤防天端の余裕高でカバーする思想であ り、曖昧さが許容されてきた.しかし、気候変動影響下では流下能力を上回る洪水も想定する必要があり、 水位が HWL を超過する状態で猛烈な風が作用した場合に、風応力が駆動力または抵抗力として洪水流現象 に有意な影響を与えると考えられる.このため、風は氾濫リスクに関わる重要なファクターであり、暴風条 件下における河川洪水流の水理特性を解明する必要がある.

研究の目的

本研究では、スーパー台風による暴風・洪水同時生起に伴う洪水氾濫リスク解明を最終目標として、暴風 条件下における河川洪水流の水理特性に関する基礎的知見を得ることを目的とする.

3. 研究の方法

まず,長さ 30km の一様断面を有する理想的な仮想矩形開水路における洪水流に対して,定常・一様な風 向・風速を変えた数値実験を実施する.その結果に基づいて,風速・風向条件に対する水位・流速変化量や 非定常応答特性を検討する.次に,実河川洪水流における風影響を評価することを目的として,令和元年東 日本台風時における江戸川を対象に風影響に関する数値実験を実施する.ここでは,同台風時における風速 の実測値を用いたケースに加えて,風速レベルや風速の継続時間を引き延ばしたケースの検討も行い,台風 の大型化による影響について感度分析する.また,河川流に対する風影響としては河川水表面上の風応力に 加えて,河口域の水位上昇も想定されるため,後者に関しては,東京湾潮位に関する過去の台風時における データを収集して検討する.

4. 研究成果

ここでは、実河川を対象とした観測データ分析および数値 実験結果について記述する.

(1)東京湾流入河川における観測データに基づく風影響分析 台風による気象場が河川の流動に与える影響を分析する ために,観測データの分析と江戸川を対象にした数値実験を 行う.気象データとしては,東京(1961~2020年,1989年 以前は3時間毎データ),江戸川臨海(1976~2020年)の時 間データを収集した.また,1950年以降の主要な高潮位・高 水位・高風速イベントを抽出し,東京湾に流入する江戸川・ 荒川・多摩川,その他の水位データ(60分間隔)を水文水質 データベースより入手した.詳細な時間変動の分析を行う場 合には,CommonMP水文水質データ取得ツールを用いて10 分データを入手した.収集および分析の対象とする観測デー タの空間分布を図-1に示す.記録的な潮位偏差が発生した イベントでは極めて強い風が湾内や河川水表面に作用した ことが推察されることから,同イベントの河川水位データを 収集し,水位の時間変動と気象場の比較を行った.図-2に令

図-1 分析対象観測データの空間分布と計算範囲

和元年東日本台風(台風19号)時の海面気圧(東京), 風速(江戸川臨海),河川水位の時間変化を例示する. 同図(c)~(e)にはそれぞれ江戸川・荒川・多摩川の水位 を示し, T.P. 表示に統一している. 水位ハイドロの系 列色を図-1の配置図の配色と一致させ、黒実線・破線 で実績潮位と天文潮位を合わせて示している.10 分デ ータとしては、海面気圧は 21:10 に最低気圧 967.3hPa を記録した. 台風の通過に伴って, 風向は概ね東から 南,西へと変化し、風速は21:20に平均31.8、最大瞬間 43.8m/s (風向:南) を記録した. 観測記録としては, 海面気圧 966.8hPa (観測史上 7 位),風速 32.6m/s,最 大瞬間風速 43.8m/s (同1位), 最大潮位偏差 1.59m (同 1位,順位は著者推計)であり、これらは 10/12の 21 時~22時にかけて発生したが、同刻は概ね干潮時であ ったため,最高潮位は翌4時の満潮時に発生し, 1.61T.P.m (同7位) であった. このような気象量ピー クと河川水位ハイドロを比較すると、河川ごとに様相 が異なる. 江戸川・荒川では強風時間帯は増水期の比 較的早い段階に相当し、ピーク水位への影響は考えづ らい.一方,多摩川では,増水期の全ての時間帯で東 ~南東の風を受け続け、水位ピーク時と風速ピークが 一致している. 図面は省略したが, 流域面積が相対的 に小さい鶴見川, 中川, 綾瀬川では洪水ピークと風速 ピークは概ね一致した.

次に、風速ピーク時間帯の荒川の水位の応答に着目 する. 図-3 に 10/12 19 時~10/13 1 時の荒川水位,海面 気圧,風速の時間変化を示す.ここでは、10分データ を表示している(潮位・天文潮位のみ時間データであ る). この間, 天文潮位は下げ潮, 干潮, 上げ潮の変化 を示すが,吸い上げと吹き寄せの効果により潮位偏差 が生じ、潮位は右肩下がりとなった. 上流の St.1 では 水位は漸増, 下流の潮位は漸減しているにも関わらず, 河川水位は特異な波形を示している. St.6~St8 ではほ ぼ同刻に水位上昇しピークを迎え、それに遅れる形で 上流側の St.5, 4, 3, 2 の水位が上昇している. この一 時的な水位上昇の発生した時間帯には、約 30m/s の南 風が定常的に作用しており、水位上昇は水表面に大き な剪断力が作用したことに起因すると推察される. -時的な水位上昇量を定量化するために、水位ハイドロ の接線(図中の灰色破線)を設定し、接線に対する変 位を水位上昇量と定義する.この水位上昇量は、最下 流の St.8(南砂町) で 0.55m, St.6(中川水門) で最大 値 0.68m をとり、上流になるに伴い漸減する. 風速を 30m/s, 吹送距離として河口からの St.6 までの北方向距 離 8.5km を用い,水深を 5m と仮定した場合の Colding の式による吹き寄せ水位上昇量の計算値は 0.73m とな る.実績の水位上昇量と概算値のオーダーが一致し、

図-2 令和元年東日本台風時における(a)海面気圧, (b)風 速, (c)江戸川, (d)荒川, (e)多摩川における水位の 時間変化

水位の時間変動特性も鑑みると, St.6~8 では吹き寄せによる水位上昇が発生し, St.2~5 では背水効果として 伝播した可能性が示唆された.

このように、令和元年東日本台風の風速ピーク時には荒川下流部における顕著な水面変動の発生が示唆された.東京湾では、令和元年東日本台風での潮位偏差1.59mを大きく上回る高潮偏差3.0mを計画値としている.このような顕著な高潮が生じる極端気象場では、出発水位上昇による河川水位の上昇に加えて、風作用による河川流動現象への影響も考慮すべきであると考えられる.

(2) 実河道を対象にした数値実験

概ね南北に流れる線形を有し、風影響が生じやすいと考えられる江戸川を対象に風影響の数値実験を行う. 解析には、Delft3D FLOW を使用し、風を作用させた形で洪水流の三次元計算を行う.計算期間は2019/10/12 0時~2019/10/140時とし、近年の主要な台風性出水イベントであり、かつ、東京湾の既往最大潮位偏差の発 生した令和元年東日本台風を対象とする.計算区間については、市川~西関宿の45km区間とする.数値実験 における境界条件を図-4に示す.上流端境界と下流端境界には、それぞれ西関宿、市川観測所の流量と水位 (水文水質 DB)を与える.風向風速データは、旧江戸川河口部に位置する江戸川臨海観測所の観測値をベー ス(Case 1)として複数ケースを想定する.具体には、風速を2倍に引き延ばした Case 2, 10/12 0時を起点 に時間を 1.5 倍に引き延ばした Case 3, 風速・時間ともに 引き延ばした Case 4 を設定した.ここで,江戸川臨海観測 所から上流端の西関宿観測所までは約 50km の空間的な離 隔があるが,風向風速は一様であると仮定し,全ての計算 メッシュに一様に与える.また,風の影響を評価する際に は,無風の Case 0 の計算結果を基準とする.

鉛直座標系にはσ座標系を用い,風による水表面剪断力 を流動に適切に反映するために,鉛直方向のメッシュ数は 50とした.また,乱流モデルには*k-ε*モデルを適用した. 風による水表面剪断力の算出には,風による水表面剪断 力の算出には,次式を用いた.

$$\tau_a = \rho_a C_d U_{wind} \times \left| U_{wind} \right| \tag{1}$$

ここで、 ρ_a は空気密度(1.2kg/m³)、 C_d は水面抵抗係数、 U_{wind} は水面から高さ10mの風速である。 U_{wind} には江戸川 臨海観測所の観測風速をそのまま与えた。また、水面抵抗 係数は既往文献に倣って風速に応じて与えた。縦断・横断 方向のメッシュサイズは、それぞれ約 200m、10m である。

風向風速に対する水表面流速の応答を評価するために, 上流端である西関宿地点(図−1 中の St.1)と,計算区間の 概ね中央に位置する玉葉橋地点 (図-1 中の星印)の水表面 流速の時間変化を図-5 に示す. これより, Case 1~4 のい ずれでも南風の作用により,水表面流速の低減が発生して いる. 流速低減の発生時刻については, 両地点で差はなく, 風速ピーク時刻に流速低減量もピーク値をとる. このよう な水表面流速の時間的な応答の早さは仮想水路と一致す る. 流速低減量に着目すると, Case 1~4 それぞれの最大値 は、西関宿地点では0.17、0.84、0.19、0.88 m/s、玉葉橋地 点では0.41, 2.18, 0.16, 1.43 m/s であった. 風速規模が異 なる Case 1 と 2,3 と 4 の流速低減量の比は 5~9 倍と大き く変化した.これは、風による水表面剪断力が風速の二乗 の関数で与えられることに加え,水面抵抗係数も風速に伴 って増加するためと考えられる. また, 増水期の序盤に強 風が作用した玉葉橋では特に大きな流速低減が生じた.

次に,西関宿,玉葉橋地点の水位の時間変化を図-6に示 す.水表面流速の応答と比較すると,風速規模が小さい Case 1,3 では水位の応答は乏しく,同図のスケールでは無風時 (Case 0)とほぼ一致する.一方,風速が2倍の Case 2,4 では大きな水位偏差が認められる.Case 1~4の水位偏差の 最大値は,西関宿地点でそれぞれ0.14,1.23,0.16,1.41 m, 玉葉橋地点で0.05,0.41,0.10,0.85 m であった.また,最 大水位偏差発生時刻も西関宿地点の方が早く,上流から水 位上昇が発生し,徐々に下流に伝播する形態が確認された.

このような水面縦断形の伝播について詳細に分析するた めに, Case 2 を対象に図-7 (a)に水位変動の主要因となる 時々刻々の北風速と, 同図 (b)には水位偏差縦断分布を示 す. 21 時には 40m/s を超える南風が大きな抵抗として作用 したことで上流端付近を中心に水位が大きく上昇してい る. その後, 南風が減衰し, 無風, 北風に転じた後も 21 時 に形成された水面波が下流に伝播しており, 水位ピーク時 まで影響を残した.

さらに、洪水ピーク時に風が作用した場合の氾濫リスク の増大に与える影響を俯瞰するために、Case 3、4 と Case0 を比較した結果として、最高水位および最大水位偏差の縦 断分布を図-8 に示す.実際に発生した風速規模の Case 3 で も長区間にわたって最高水位が 10cm 以上上昇した. Case 4 では水位上昇はより顕著となり、上流端地点において 1.25m となった.また、最大水位偏差の縦断分布は Case3、4 とも に右肩下がりの分布となっており、風による水表面剪断力 が抵抗として水面全体に抵抗として作用したことで、粗度 の増大に類似した変化を示した.

このように、本数値実験では、今後見込まれる風速の増大 が河川の流動に大きな影響を与え得ることと、増水期に発

海面気圧, (c)風速の時間変化

図-4 江戸川における数値実験の境界条件

図-6 (a)西関宿, (b)玉葉橋における水位の時間変化

生した影響がピーク時まで残り,氾濫リスクの増大に 影響する可能性を示唆した.また,現況風速であって も風速と洪水のピークが重なると 10cm 以上の水位上 昇を引き起こし,その影響は風速の増大によって著し く大きくなることが示唆された.

(4) 結論

1950年以降の潮位・水位・海面気圧・風向風速の観 測データを収集整理し,観測史上1位の潮位偏差を記 録した令和元年東日本台風時の気象場と河川水位の比 較により,荒川下流域において風に起因するとみられ る最大 0.68mの水位上昇を確認した.

図-7 Case2 における各時刻における(a)北風速および (b)Case 0 に対する水位偏差の縦断分布

図-8 Case 3, 4 の(a)最高水位および(b)最大水位偏差の縦 断分布

江戸川を対象とした数値実験により,現況の風でも 流速および水位に影響を及ぼしていることが示唆された.さらに,風速の増大によって,増水期に生じた水 位上昇が水面波として伝播し,洪水ピーク時まで影響を残す可能性が示唆された.

本研究では、風向風速の空間一様性を仮定しており、課題がある.一方で、河道が風道となる可能性や、 本研究では風浪や越波、砕波による水位上昇等を加味しておらず、よりシビアな条件となる可能性もある. また、風速の増大は潮位上昇と風浪をもたらすため、市川観測所を下流端とする本検討には課題がある.こ れら課題に対しては、気象モデルと河川モデル、海洋・海岸モデルの連成が不可欠であり、今後の気候変動 影響評価における重要な技術開発テーマと言えよう.

5.主な発表論文等

〔 雑誌論文 〕 計5件(うち査読付論文 4件/うち国際共著 0件/うちオープンアクセス 0件)

1.著者名	4.巻
Jin Kashiwada and Yasuo Nihei	39
2.論文標題	5 . 発行年
A HIGH ACCURATE AND EFFICIENT 3D RIVER FLOW MODEL WITH A NEW MODE-SPLITTING TECHNIQUE	2022年
3 . 雑誌名	6 . 最初と最後の頁
Proceedings of the 39th IAHR World Congress	**
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
10.3850/IAHR-39WC2521711920221420	有
オープンアクセス オープンアクセスではない、又はオープンアクセスが困難	国際共著

1.著者名	4.巻
柏田仁,尾形勇紀,二瓶泰雄,山田真史,佐山敬洋	77
2.論文標題	5 . 発行年
三次元河川流・氾濫流一体解析による球磨川水害における家屋被災リスクの分析	2022年
3.雑誌名	6 . 最初と最後の頁
土木学会年次学術講演会	**
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
なし	無
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	

1.著者名	4.巻
遊佐 望海,柏田 仁,二瓶 泰雄	78
2.論文標題	5 . 発行年
暴風作用下における河川洪水流の流速・水位応答に関する三次元数値解析	2022年
3.雑誌名	6.最初と最後の頁
土木学会論文集B1(水工学)	I_13-I_18
掲載論文のD01(デジタルオブジェクト識別子)	査読の有無
10.2208/isceihe.78.2 13	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-

1 . 著者名	4 . 巻
柏田仁 , 窪田利久 , 平本達典 , 山田真史 , 佐山敬洋 , 二瓶泰雄	29
2.論文標題	5 . 発行年
河川流・氾濫流一体解析による令和2年球磨川水害における建物流失率の検討	2023年
3.雑誌名	6 . 最初と最後の頁
河川技術論文集	-
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
なし	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-

1.著者名	4.巻
柏田 仁, 二瓶 泰雄	29
2.論文標題	5.発行年
国内外の河川流・氾濫流解析モデルのレビュー~3次元モデルに着目して~	2023年
	2020 1
3.雑誌名	6.最初と最後の頁
河川技術論文集	-
掲載論文のD01(デジタルオブジェクト識別子)	査読の有無
	有
	13
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-
〔学会発表〕 計5件(うち招待講演 0件/うち国際学会 1件)	

1. 発表者名 Jin Kashiwada

2.発表標題

A HIGH ACCURATE AND EFFICIENT 3D RIVER FLOW MODEL WITH A NEW MODE-SPLITTING TECHNIQUE

3 . 学会等名

Proceedings of the 39th IAHR World Congress(国際学会)

4.発表年 2022年

1.発表者名 柏田仁

2.発表標題

三次元河川流・氾濫流一体解析による球磨川水害における家屋被災リスクの分析

3.学会等名

第77回土木学会年次学術講演会

4.発表年 2022年

1.発表者名 遊佐望海

2.発表標題

暴風作用下における河川洪水流の流速・水位応答に関する三次元数値解析

3 . 学会等名

第67回水工学講演会

4.発表年 2022年

1.発表者名

柏田仁

2.発表標題

河川流・氾濫流一体解析による令和2年球磨川水害における建物流失率の検討

3.学会等名 2023年度河川技術に関するシンポジウム

4 . 発表年 2023年

1.発表者名 二瓶泰雄

2.発表標題

国内外の河川流・氾濫流解析モデルのレビュー~3次元モデルに着目して~

3 . 学会等名

2023年度河川技術に関するシンポジウム

4.発表年

2023年

〔図書〕 計0件

〔産業財産権〕

〔その他〕

6、研究組織

 0			
	氏名 (ローマ字氏名) (研究者番号)	所属研究機関・部局・職 (機関番号)	備考

7.科研費を使用して開催した国際研究集会

〔国際研究集会〕 計0件

8.本研究に関連して実施した国際共同研究の実施状況

共同研究相手国	相手方研究機関
---------	---------