科学研究費助成事業 研究成果報告書

^{2版} 科研費

令和 5 年 6 月 8 日現在

マ和 5 年 6 月 6 日現住
機関番号: 13901
研究種目: 研究活動スタート支援
研究期間: 2021 ~ 2022
課題番号: 2 1 K 2 0 4 8 5
研究課題名(和文)Bio-abiotic hybrid system for light-driven carbon dioxide conversion to produce ethanol
研究課題名(英文)Bio-abiotic hybrid system for light-driven carbon dioxide conversion to produce ethanol
│ │ 研究代表者
王 謙 (Wang, Qian)
名古屋大学・工学研究科・准教授
研究者番号:20914162
交付決定額(研究期間全体):(直接経費) 2,400,000 円

研究成果の概要(和文):本研究では、半導体の優れた光吸収と酸化能力、そしてバクテリア細胞の高い還元能 力を組み合わせたハイブリッド型光触媒系を構築し、水と二酸化炭素から酢酸とエタノールを合成することを提 案しました。具体的には、Sporomusa ovataまたはClostridium ljungdahlii細菌を水分解ができる光触媒シート に導入し、ハイブリッド光触媒系の開発に成功しました。これにより、光触媒と細菌の特徴を活かして、水と二 酸化炭素から酢酸とエタノールが合成できることが示されました。

研究成果の学術的意義や社会的意義

This project developed novel photocatalytic systems composed of microorganisms and semiconductors to produce multicarbon products from CO2 and water. This would advance the field, where most photocatalytic CO2 reduction systems required hole scavengers and obtained mono-carbon compounds only.

研究成果の概要(英文): This project proposes a strategy for artificial photosynthesis to construct bio-abiotic hybrid systems composed of nonphotosynthetic, CO2-fixing bacteria as the catalyst for CO2 reduction and semiconductors as light absorbers because CO2-fixing bacteria are favored to facilitate the multistep process of CO2 fixation selectively and efficiently. Such systems can harness both the efficient light-harvesting capabilities of semiconductors and the strong catalytic power of living biocatalysts. The proof-of-concept bio-abiotic hybrid systems that interface non-photosynthetic bacteria, such as Sporomusa ovata and Clostridium ljungdahlii, with the photocatalyst sheet consisting of La- and Rh-codoped SrTiO3 and BiVO4 semiconductor powders fixed into a three-dimensional inverse opal-indium tin oxide layer successfully produced acetate and ethanol from CO2 and water.

研究分野:材料工学

キーワード: Photocatalysis

科研費による研究は、研究者の自覚と責任において実施するものです。そのため、研究の実施や研究成果の公表等に ついては、国の要請等に基づくものではなく、その研究成果に関する見解や責任は、研究者個人に帰属します。

1.研究開始当初の背景

The primary objective of artificial photosynthesis is to effectively utilize intermittent solar energy for the conversion of water (H₂O) and carbon dioxide (CO₂) into chemically storable fuels and chemicals, thereby closing the carbon cycle and reducing our dependence on fossil fuels.^{1,2} However, the main challenge lies in achieving efficient conversion of CO₂ into highly stable, multi-carbon (C_{2/2+}) liquid fuels with a high energy density, using only sunlight, CO₂ and H₂O, without the need for sacrificial electron donors or external electricity input.

Although particulate photocatalysts and bias-free photoelectrochemical cells have demonstrated the conversion of CO_2 into fuels using only light, H₂O and CO_2 , they have predominantly yielded mono-carbon compounds such as carbon monoxide, methane, and formate.³⁻⁶ However, for long-term stability and direct use as feedstocks for the synthesis of high-energy hydrocarbon fuels and oxygenates, multi-carbon liquid products like ethanol and acetic acid are crucial. While previous reports have shown the feasibility of electrochemical CO_2 -to- $C_{2/2+}$ conversion using inorganic materials with electricity input,⁷⁻¹⁰ the establishment of solar-driven processes for such conversions has been rare. Moreover, (photo)electrochemical systems have limitations in terms of selectivity, scalability, complexity, and versatility.

An emerging alternative to (photo)electrochemical configurations is the utilization of colloidal systems with particulate semiconductor photocatalysts, offering a simpler design and potentially lower cost. However, semiconductors often exhibit poor selectivity and efficiency in CO₂ reduction reactions due to the lack of active sites. Conversely, nonphotosynthetic, CO₂-fixing bacteria possess metabolic pathways that can selectively convert CO₂ into $C_{2/2+}$ products while maintaining relative stability under environmental perturbations.^{11,12} Therefore, a promising solution lies in combining the light-harvesting capabilities of semiconductors with the catalytic power of biological systems. However, among the few reported hybrid systems, the limited oxidising power of the photosensitiser unit necessitates the use of sacrificial reductants, such as cysteine, to ensure sufficient oxidation of water.¹³⁻¹⁵

2.研究の目的

The ultimate objective of this research is the scalable photocatalytic conversion of CO₂ into $C_{2/2+}$ fuels with high selectivity and solar conversion efficiency. The proposed strategy aims to overcome the hurdles of (photo)electrochemical systems limited by the scalability issues and current bio-abiotic systems requiring sacrificial reagents in photocatalytic CO₂RR constructs, and thus provide the possibility for scalable, efficient and selective $C_{2/2+}$ product formation using only sunlight, CO₂ and H₂O.

3.研究の方法

This project constructed natureinspired colloidal Z-scheme systems composed of a bio-abiotic hybrid photocatalyst for CO₂RR (photocatalyst I) and an oxygen evolution photocatalyst (photocatalyst II), as shown in Figure 1a. The Zscheme pathway based on two-step photoexcitation is exceptionally useful because the bandgap of the photocatalytic material does not have to straddle both the reduction and oxidation potentials, ensuring high light-harvesting capability and also driving force large for the photoexcited carriers to reach catalysts.¹⁶ Hence, such systems can offer both the selectivity and efficiency of biology and strong oxidation power of inorganic semiconductors.

The immobilisation of semiconductor nanoparticles with narrow bandgaps onto a conductive photocatalyst sheets (**Figure 1b**) ^{5,17} 7

Figure 1. Schematic diagrams of (**a**) artificial photosynthetic solar-to-fuels conversion based on a hybrid Z-scheme system, and (**b**) photocatalyst sheet for Z-scheme CO_2RR coupled with water oxidation.

narrow bandgaps onto a conductive layer, such as gold and carbon, is achieved in the monolithic photocatalyst sheets (**Figure 1b**).^{5,17} These photocatalyst sheets have demonstrated the ability to achieve

scalable and efficient light-driven water splitting without external assistance, thanks to the presence of solid conductive mediators that facilitate interparticle electron transfer. Additionally, the unique structure of the photocatalyst sheet allows for the proximity of reduction and oxidation reactions, resulting in the significant suppression of local pH changes during the redox reactions. This design of the photocatalyst sheet is expected to overcome common challenges observed in (photo)electrochemical and colloidal photocatalytic systems, and it is particularly suitable for the assembly of hybrid bio-abiotic systems. Furthermore, the high solar-to-fuel conversion efficiency of the photocatalyst sheet at neutral pH makes it well-suited for such applications.

Figure 2. Preparation of the bio-abiotic hybrid.

The bio-abiotic hybrid system was performed by interfacing the non-photosynthetic bacterium *Sporomusa ovata* (*S. ovata*) with a photocatalyst sheet consisting of La- and Rh-codoped SrTiO₃ and BiVO₄:Mo semiconductor powders fixed into a three-dimensional inverse opal-indium tin oxide (IO-ITO) layer (SrTiO₃:La,Rh|IO-ITO|BiVO₄:Mo) (**Figure 2**). *S. ovata* was selected as a model microbe because it can efficiently catalyse the CO₂RR to acetate by using H₂ or electrons directly from an electrode in microbial electrosynthesis.¹⁸⁻²⁰ SrTiO₃:La,Rh and BiVO₄:Mo were chosen as the semiconductor I and II, respectively, because they are responsive to visible light, easy to prepare, and exhibited the highest activity for photocatalytic water splitting in the photocatalyst sheet configuration.

Incorporation of bacteria into the photocatalyst sheet was realised in an organic-free medium under simulated sunlight irradiation. The sheet acted as the sole electron donor for the bacteria metabolism. Through this way, the bacteria was loaded onto the sheet spontaneously by feeding them with electrons excited in $SrTiO_3$:La,Rh and CO_2 was reduced simultaneously, while the holes in $BiVO_4$:Mo oxidised water to generate oxygen to compete the full reaction.

4.研究成果

In this study, a photocatalyst sheet composed of SrTiO₃:La,Rh|IO-ITO|BiVO₄:Mo was prepared using a simple drop-casting method. The preparation process involved suspending a mixture of SrTiO₃:La,Rh, BiVO₄:Mo powders in isopropanol using ultrasonication for a duration of 30 minutes. Subsequently, the suspension was drop-cast onto the IO-ITO layer. The SrTiO₃:La,Rh and BiVO₄:Mo particle layers on the sheet were modified with Cr_2O_3/Ru and RuO_2 nanoparticles, respectively, through photodeposition. This modification led to the formation of two distinct photocatalysts: the H₂ evolution photocatalyst (Cr_2O_3/Ru -SrTiO₃:La,Rh) and the O₂ evolution photocatalyst (RuO_2 -BiVO₄:Mo).

Figure 3. Time courses of (**a**) the water splitting reaction using a Cr_2O_3/Ru -SrTiO₃:La,Rh|IO-ITO|RuO₂-BiVO₄:Mo sheet and (**b**) the CO₂ reduction coupled with water oxidation using a *S. ovata*|sheet under simulated sunlight (AM 1.5G).

When immersed in a modified *S. ovata* aqueous medium with a pH of 7.0 and purged with a gas mixture of 80% N₂ and 20% CO₂, the obtained photocatalyst sheet demonstrated water splitting with the stoichiometric evolution of H₂ and O₂, as shown in **Figure 3a**. The prepared sheet was then immersed in the same medium containing *S. ovata* cells. The purpose of this step was to investigate the CO₂RR in the

presence of the biohybrid system. Under the same experimental conditions, the biohybrid system simultaneously generated CH_3COO^- and O_2 in a 1:2 ratio, as expected (**Figure 3b**). Proton nuclear magnetic resonance spectroscopy and gas chromatography analyses confirmed that CH_3COO^- was the only detectable product of the CO_2RR , and a small amount of H_2 was also observed. The selectivity for CH_3COO^- formation in the reduction reactions was found to be approximately 90%. Furthermore, scanning electron microscopy images demonstrated the presence of *S. ovata* cells on the photocatalyst sheet after the reaction.

Figure 4. Pathway diagram depicting the acetate and O_2 production from CO_2 and water using the bioabiotic hybrid.

When the photocatalyst sheet was exposed to simulated sunlight, photoexcitation occurred, generating electrons and holes in both SrTiO₃:La,Rh and BiVO₄:Mo (**Figure 4**). The electrons transferred from the conduction band of BiVO₄:Mo to the donor levels of SrTiO₃:La,Rh through the IO-ITO layer. Simultaneously, the electrons in SrTiO₃:La,Rh, aided by Cr₂O₃/Ru, catalyse the conversion of H⁺ into H₂. On the other hand, the holes in BiVO₄:Mo, supported by RuO₂, participate in the oxidation of water, resulting in the production of O₂. These reactions collectively achieved the overall water splitting process. The generated H₂ was utilised by *S. ovata* for the CO₂ reduction process, where it was involved in the production of CH₃COO⁻ through the acetyl-CoA Wood-Ljungdahl pathway. Additionally, *S. ovata* harnessed photogenerated electrons from illuminated SrTiO₃:La,Rh nanoparticles to carry out photosynthesis.

In our study, we extended the application of the same system to another bacterium, *Clostridium ljungdahlii* (*C. ljungdahlii*), with the aim of achieving ethanol production through CO₂ reduction using

water as the electron donor. We observed ethanol production using the *C. ljungdahlii*|sheet system under visible light irradiation, yet the main products were H₂ and acetate with a selectivity for ethanol production of only approximately 2% (**Figure 5**). Moreover, the observed reduction and oxidation products did not follow the expected stoichiometric ratio. These findings indicate the need for more careful control of the O₂ concentration in the reaction system and the implementation of protective measures for *C. ljungdahlii* in future investigations. Addressing these aspects will be crucial for further optimising the system and enhancing the selectivity and efficiency of ethanol production.

References

[1] Tian, B. et al. Prog. Mater Sci. 133, 101056 (2023). [2] Yang, R. et al. Angew. Chem. Int. Ed. e202218016 (2023). [3] Sekizawa, K. et al. ACS Catal. 8, 1405-1416 (2018). [4] Suzuki, T. M. et al. Chem. Commun. 54, 10199-10202 (2018). [5] Wang, Q. et al. Nat. Energy, 5, 703-710 (2020). [6] Wang, Y. et al. Nat. Commun. 11, 3043 (2020). [7] Jiang, K. et al. Nat. Catal. 1, 111-119 (2018). [8] Morales-Guio, C. G. et al. Nat. Catal. 1, 764-771 (2018). [9] García de Arquer, F. P. et al. Science 367, 661-666 (2020). [10] Nam, D.-H. et al. Nat. Mater. 19, 266-276 (2020). [11] Cestellos-Blanco, S. et al. Nat. Catal. 3, 245-255 (2020). [12] Wang, Q. et al. Nano Res. 15, 10090-10109 (2022). [13] Sakimoto, K. K. et al. Science 351, 74-77 (2016). [14] Zhang, H. et al. Nat. Nanotechno. 13, 900-905 (2018). [15] Zhang, R. et al. Chem 6, 234-249 (2020). [16] Wang, Y. et al. Chem. Rev. 118, 5201-5241 (2018). [17] Wang, Q. et al. Nat Mater 15, 611-615 (2016). [18] Liu, C. et al. Nano Lett. 15, 3634-3639 (2015). [19] Nevin, K. P. et al. mBio 1, e00103 (2010). [20] Wang, Q. et al. Nat. Catal. 5, 633-641 (2022).

5 . 主な発表論文等

〔雑誌論文〕 計5件(うち査読付論文 5件/うち国際共著 3件/うちオープンアクセス 1件)

4.巻
15
5 . 発行年
2022年
6.最初と最後の頁
10090 ~ 10109
 査読の有無
有
E E
国際共著
-

1.著者名	4.巻
Tian Bin, Ho Derek, Qin Jiaqian, Hu Jinguang, Chen Zhangxing, Voiry Damien, Wang Qian, Zeng	133
Zhiyuan	
2.論文標題	5 . 発行年
Framework structure engineering of polymeric carbon nitrides and its recent applications	2023年
3. 雑誌名	6.最初と最後の頁
Progress in Materials Science	101056 ~ 101056
掲載論文のD01(デジタルオプジェクト識別子)	査読の有無
10.1016/j.pmatsci.2022.101056	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	該当する

1.著者名	4.巻
Wu Yaqiang, Sakurai Takuya, Adachi Takumi, Wang Qian	15
2.論文標題	5 . 発行年
Alternatives to water oxidation in the photocatalytic water splitting reaction for solar	2023年
hydrogen production	
3.雑誌名	6.最初と最後の頁
Nanoscale	6521 ~ 6535
掲載論文のD01(デジタルオブジェクト識別子)	査読の有無
10.1039/D3NR00260H	有
オープンアクセス	国際共著
オープンアクセスとしている(また、その予定である)	-

1.著者名 Yang Ruijie、Fan Yingying、Zhang Yuefeng、Mei Liang、Zhu Rongshu、Qin Jiaqian、Hu Jinguang、 Chen Zhangxing、Hau Ng Yun、Voiry Damien、Li Shuang、Lu Qingye、Wang Qian、Yu Jimmy C.、Zeng Zhiyuan	4.巻 62
2.論文標題	5 . 発行年
2D Transition Metal Dichalcogenides for Photocatalysis	2023年
3.雑誌名	6.最初と最後の頁
Angewandte Chemie International Edition	e202218016
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
10.1002/anie.202218016	有
「オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	該当する

1.著者名	4.巻
Wang Qian、Kalathil Shafeer、Pornrungroj Chanon、Sahm Constantin D.、Reisner Erwin	5
2.論文標題	5.発行年
Bacteria-photocatalyst sheet for sustainable carbon dioxide utilization	2022年
bacteria photocataryst sheet for sustainable carbon drowide utilization	2022-
3. 雑誌名	6.最初と最後の頁
Nature Catalysis	633 ~ 641
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
10.1038/s41929-022-00817-z	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	該当する
〔学会発表〕 計5件(うち招待講演 4件 / うち国際学会 4件)	
Qian Wang	
2.発表標題	
Scalable photocatalyst sheet for solar fuel production via artificial photosynthesis	
3.学会等名	
The Japan Photovoltaic Society Women in Photovoltaics分科会(招待講演)	
4	
4. 発表年	
4 . 発表年 2021年	
2021年	
2021年	
2021年 1.発表者名	
2021年 1.発表者名	
2021年 1.発表者名	
2021年 1.発表者名 Qian Wang	
2021年 1 . 発表者名 Qian Wang 2 . 発表標題	
2021年 1.発表者名 Qian Wang	
2021年 1 . 発表者名 Qian Wang 2 . 発表標題	
2021年 1 . 発表者名 Qian Wang 2 . 発表標題	
2021年 1 . 発表者名 Qian Wang 2 . 発表標題 Scalable solar fuel production via artificial photosynthesis	
2021年 1 . 発表者名 Qian Wang 2 . 発表標題 Scalable solar fuel production via artificial photosynthesis 3 . 学会等名	
2021年 1 . 発表者名 Qian Wang 2 . 発表標題 Scalable solar fuel production via artificial photosynthesis 3 . 学会等名 愛知県・名古屋大学・シンガポール国立大学 自動車関連先端技術分野における 産学行政連携オンラ	ラインセミナー(招待講演)(国際学
2021年 1.発表者名 Qian Wang 2.発表標題 Scalable solar fuel production via artificial photosynthesis 3.学会等名 愛知県・名古屋大学・シンガポール国立大学 自動車関連先端技術分野における 産学行政連携オン芸 会)	ラインセミナー(招待講演)(国際学
2021年 1 . 発表者名 Qian Wang 2 . 発表標題 Scalable solar fuel production via artificial photosynthesis 3 . 学会等名 愛知県・名古屋大学・シンガポール国立大学 自動車関連先端技術分野における 産学行政連携オン 会) 4 . 発表年	ラインセミナー(招待講演)(国際学
2021年 1.発表者名 Qian Wang 2.発表標題 Scalable solar fuel production via artificial photosynthesis 3.学会等名 愛知県・名古屋大学・シンガポール国立大学 自動車関連先端技術分野における 産学行政連携オン 会)	ラインセミナー(招待講演)(国際学
2021年 1 . 発表者名 Qian Wang 2 . 発表標題 Scalable solar fuel production via artificial photosynthesis 3 . 学会等名 愛知県・名古屋大学・シンガポール国立大学 自動車関連先端技術分野における 産学行政連携オン 会) 4 . 発表年	ラインセミナー(招待講演)(国際学
2021年 1.発表者名 Qian Wang 2.発表標題 Scalable solar fuel production via artificial photosynthesis 3.学会等名 愛知県・名古屋大学・シンガポール国立大学 自動車関連先端技術分野における 産学行政連携オン 会) 4.発表年 2021年	ラインセミナー(招待講演)(国際学
2021年 1 . 発表者名 Qian Wang 2 . 発表標題 Scalable solar fuel production via artificial photosynthesis 3 . 学会等名 愛知県・名古屋大学・シンガポール国立大学 自動車関連先端技術分野における 産学行政連携オン 会) 4 . 発表年 2021年 1 . 発表者名	ラインセミナー(招待講演)(国際学
2021年 1 . 発表者名 Qian Wang 2 . 発表標題 Scalable solar fuel production via artificial photosynthesis 3 . 学会等名 愛知県・名古屋大学・シンガポール国立大学 自動車関連先端技術分野における 産学行政連携オン 会) 4 . 発表年 2021年	ラインセミナー(招待講演)(国際学
2021年 1.発表者名 Qian Wang 2.発表標題 Scalable solar fuel production via artificial photosynthesis 3.学会等名 愛知県・名古屋大学・シンガポール国立大学 自動車関連先端技術分野における 産学行政連携オン 会) 4.発表年 2021年 1.発表者名	ラインセミナー(招待講演)(国際学
2021年 1.発表者名 Qian Wang 2.発表標題 Scalable solar fuel production via artificial photosynthesis 3.学会等名 愛知県・名古屋大学・シンガポール国立大学 自動車関連先端技術分野における 産学行政連携オン 会) 4.発表年 2021年 1.発表者名	ラインセミナー(招待講演)(国際学
2021年 1.発表者名 Qian Wang 2.発表標題 Scalable solar fuel production via artificial photosynthesis 3.学会等名 愛知県・名古屋大学・シンガポール国立大学 自動車関連先端技術分野における 産学行政連携オンラ 会) 4.発表年 2021年 1.発表者名 Qian Wang	ラインセミナー(招待講演)(国際学
2021年 1.発表者名 Qian Wang 2.発表標題 Scalable solar fuel production via artificial photosynthesis 3.学会等名 愛知県・名古屋大学・シンガポール国立大学 自動車関連先端技術分野における 産学行政連携オンラ 会) 4.発表年 2021年 1.発表者名 Qian Wang 2.発表標題	ラインセミナー(招待講演)(国際学
2021年 1.発表者名 Qian Wang 2.発表標題 Scalable solar fuel production via artificial photosynthesis 3.学会等名 愛知県・名古屋大学・シンガポール国立大学 自動車関連先端技術分野における 産学行政連携オンラ 会) 4.発表年 2021年 1.発表者名 Qian Wang	ラインセミナー(招待講演)(国際学
2021年 1.発表者名 Qian Wang 2.発表標題 Scalable solar fuel production via artificial photosynthesis 3.学会等名 愛知県・名古屋大学・シンガポール国立大学 自動車関連先端技術分野における 産学行政連携オンラ 会) 4.発表年 2021年 1.発表者名 Qian Wang 2.発表標題	ラインセミナー(招待講演)(国際学
2021年 1.発表者名 Qian Wang 2.発表標題 Scalable solar fuel production via artificial photosynthesis 3.学会等名 愛知県・名古屋大学・シンガポール国立大学 自動車関連先端技術分野における 産学行政連携オンラ 会) 4.発表年 2021年 1.発表者名 Qian Wang 2.発表標題	ラインセミナー(招待講演)(国際学
2021年 1.発表者名 Qian Wang 2.発表標題 Scalable solar fuel production via artificial photosynthesis 3.学会等名 愛知県・名古屋大学・シンガポール国立大学 自動車関連先端技術分野における 産学行政連携オンラ 会) 4.発表年 2021年 1.発表者名 Qian Wang 2.発表標題 Scalable photocatalyst sheets for solar fuel production from C02 and water	ラインセミナー(招待講演)(国際学
2021年 1.発表者名 Qian Wang 2.発表標題 Scalable solar fuel production via artificial photosynthesis 3.学会等名 愛知県・名古屋大学・シンガポール国立大学 自動車関連先端技術分野における 産学行政連携オンラ 会) 4.発表年 2021年 1.発表者名 Qian Wang 2.発表標題	ラインセミナー (招待講演) (国際学
2021年 1.発表者名 Qian Wang 2.発表標題 Scalable solar fuel production via artificial photosynthesis 3.学会等名 愛知県・名古屋大学・シンガポール国立大学 自動車関連先端技術分野における 産学行政連携オンラ会) 4.発表年 2021年 1.発表者名 Qian Wang 2.発表標題 Scalable photocatalyst sheets for solar fuel production from C02 and water 3.学会等名	
2021年 1.発表者名 Qian Wang 2.発表標題 Scalable solar fuel production via artificial photosynthesis 3.学会等名 愛知県・名古屋大学・シンガポール国立大学 自動車関連先端技術分野における 産学行政連携オンラ会) 4.発表年 2021年 1.発表者名 Qian Wang 2.発表標題 Scalable photocatalyst sheets for solar fuel production from C02 and water	
2021年 1 . 発表者名 Qian Wang 2 . 発表標題 Scalable solar fuel production via artificial photosynthesis 3 . 学会等名 愛知県・名古屋大学・シンガポール国立大学 自動車関連先端技術分野における 産学行政連携オンラ 会) 4 . 発表年 2021年 1 . 発表者名 Qian Wang 2 . 発表標題 Scalable photocatalyst sheets for solar fuel production from C02 and water 3 . 学会等名 International Young Scientists Salon on Photo & Electro Catalytic C02 Reduction (招待講演	
2021年 1.発表者名 Qian Wang 2.発表標題 Scalable solar fuel production via artificial photosynthesis 3.学会等名 愛知県・名古屋大学・シンガポール国立大学 自動車関連先端技術分野における 産学行政連携オンニ 会) 4.発表年 2021年 1.発表者名 Qian Wang 2.発表標題 Scalable photocatalyst sheets for solar fuel production from C02 and water 3.学会等名	

1.発表者名

Qian Wang

2.発表標題

Scalable photocatalyst sheets for efficient solar-to-fuel conversion

3 . 学会等名

The 33rd International Photovoltaic Science and Engineering Conference(国際学会)

4 . 発表年 2022年

2022+

1.発表者名 Qian Wang

2.発表標題

Photocatalyst sheets for scalable solar fuels production via artificial photosynthesis

3 . 学会等名

Photocatalysis International Forum 2023(招待講演)(国際学会)

4.発表年

2023年

〔図書〕 計0件

〔産業財産権〕

〔その他〕

-

6	研究組織

	氏名 (ローマ字氏名) (研究者番号)	所属研究機関・部局・職 (機関番号)	備考
--	---------------------------	-----------------------	----

7.科研費を使用して開催した国際研究集会

〔国際研究集会〕 計0件

8.本研究に関連して実施した国際共同研究の実施状況

共同研究相手国	相手方研究機関			
英国	Univeristy of Cambridge	Northumbria University		
中国	City University of Hong Kong			