

科学研究費助成事業(科学研究費補助金)研究成果報告書

平成25年6月3日現在

機関番号:14401
研究種目:科学研究費基盤研究(C)
研究期間:2010~2013
課題番号:22510115
研究課題名(和文) 酸化物内包カーボンナノチューブの NO ₂ 検知における p-n 接合効果
研究課題名(英文) P-N Junction Effect of Metal Oxides inside Carbon Nanotubes on NO ₂
detection
研究代表者
橋新 剛(HASHISHIN TAKESHI)
大阪大学・接合科学研究所・特任研究員
研究者番号:20336184

研究成果の概要(和文): バンドギャップが異なる n 型半導体酸化物(TiO₂: 3.0 eV、SnO₂: 3.7 eV)を p 型半導体カーボンナノチューブ(CNT)に内包させた時に、酸化物のバンドギャップが酸化物内包 CNT の p-n 接合の形成に寄与することが、1 ppm NO₂に対する電気抵抗変化によって明らかにされた。他方、走査トンネル分光法によって、空気中と真空中で得られた I-V 曲線をバイアス電圧(V)で微分した微分コンダクタンス(dI/dV)の評価では、SnO₂を CNT 外壁に分散担持させた SnO₂ 担持 CNT と CNT 単独において見積もられたバンドギャップから p-n 接合形成の証拠を得た。

研究成果の概要 (英文): N-type semiconductor oxides with different band gap (TiO₂: 3.0 eV, SnO₂: 3.7 eV) were deposited inside p-type carbon nanotubes (CNTs). It was clarified that the resistance changes of these materials to 1 ppm NO₂ depended on band-gap of oxides corresponded to the magnitude of p-n junction. Besides, the current differentiated by bias voltage was examined for CNTs and SnO₂-CNTs by means of scanning tunneling spectroscopy (STS). As the result, the formation of p-n junction for SnO₂-CNTs was confirmed from the band-gap evaluated from CNTs and SnO₂-CNTs.

			(金額単位:円)
	直接経費	間接経費	合 計
2010年度	1, 700, 000	510,000	2, 210, 000
2011 年度	1,000,000	300, 000	1, 300, 000
2012年度	700, 000	210,000	910,000
総計	3, 400, 000	1, 020, 000	4, 420, 000

交付決定額

研究分野: 複合新領域
 科研費の分科・細目: ナノ・マイクロ科学
 キーワード: ナノ粒子・ナノチューブ、NO2

1. 研究開始当初の背景

平成 19 年度に若手研究 (A) で採択された「カ ーボンナノチューブ-酸化物複合化センサに よる N0₂検知機構の解明」の成果として、次 の 3 項目を明らかにした。(1) p型半導体で あるカーボンナノチューブ (CNT) に n型半 導体である酸化タングステン (WO₃)、酸化ス ズ (SnO₂)などの酸化物を微量添加した時に、 p-n 接合の形成にともない電荷が存在しない 空間電荷層が半導体表面に形成される。(2) NO₂ などの酸化性ガスがその空間電荷層に吸 着するとホールが注入され、電気抵抗が減少 する。(3)酸化物をCNTの筒の内側に導入す ることで、NO₂の吸着量が大幅に増加する。 (3)の知見は、図1に示すようなモデルで 説明することができる。CNT内壁にSnO₂が存 在する場合、両者の接触界面(p-n接合界面) を起点として空間電荷層の広がりが形成さ れる(図1)。この広がりがCNTの外壁表面に まで及び、吸着酸素量が増大する。NO₂に曝す と、この吸着酸素の存在量がNO₂吸着量の増 大につながる。また、SnO₂はCNTの内壁に存 在するため、NO₂は SnO₂に吸着することはない。したがって、空間電荷層の緩和が起こらない。

このモデルを立証するためには、①酸化物内 包 CNT において CNT の壁の厚みによる空間電 荷層の厚み変化を電子濃度として計測する こと、②バンドギャップが異なる3種類の酸 化物(W0₃:2.8eV, TiO₂:3.2eV, SnO₂:3.6eV)を 同じ厚みの CNT に内包させることで、p-n 接 合による空間電荷層の厚みが変化するかど うかを電子濃度の計測結果として得ること、 ③内包させる酸化物の粒子径が空間電荷層 の厚みにどのような影響を与えるのかを調 査すること、が必要となる。

図 1. 酸化物内包 CNT におけるガス 吸着モデル.

矢印の起点: p-n 接合界面

2. 研究の目的

n型半導体である酸化物を p型半導体である カーボンナノチューブ (CNT) に内包させた 酸化物内包 CNT において、CNT のチューブ 壁の厚さが異なる場合の空気中、NO2中の空 間電荷層の厚さ変化を電子濃度として計測 する。また、バンドギャップが異なる3種類 の酸化物 (SnO₂, WO₃, TiO₂) によって p-n 接合による空間電荷層の厚みを変化させ、 NO2 吸着前後でその厚みがどの程度緩和さ れるのかを電子濃度として計測する。さらに、 CNT に内包させる酸化物の粒子径による空 間電荷層の変化についても計測する。これら の測定結果から、NO2検知における p-n 接合 効果を明らかにする。尚、電子密度計測には 現有の全環境制御用走査プローブ顕微鏡 (SPM) を用いる。

3. 研究の方法

<u>平成 22 年度</u>では、超音波還元法により酸化 物を CNT に内包させる。酸化物と CNT の接 合界面を起点として形成される空間電荷層 の厚さが CNT のチューブ壁の厚さによって どの程度変化するのかを空気中、NO2 中での 電子濃度として微視的に計測する。また、マ イクロギャップ Au 電極に成膜した酸化物内 包 CNT の空間電荷層の厚さを空気中、NO2 中での電気抵抗変化として巨視的に測定す る。平成 23 年度では、バンドギャップが異 なる酸化物 (SnO₂, TiO₂, WO₃)を CNT に内 包させることで空間電荷層の厚さがどの程 度変化するのかを前述の微視的・巨視的測定 によって調べる。<u>平成 24 年度</u>では、酸化物 の粒子サイズが空間電荷層の厚さに及ぼす 影響を微視的・巨視的に測定する。<u>全年度で</u> 微細構造観察を実施する。TEM 用制限視野 絞り・対物絞り (1 μ m)を用いて CNT 内壁 と酸化物粒子との接合界面における微細構 造と空間電荷層の厚さとの相関を明らかに する。

4. 研究成果

(1)酸化物内包カーボンナノチューブの調製 超音波還元法による酸化物内包カーボンナノ チューブ(CNT)の調製、酸化物内包CNTの NO2吸着特性におけるCNTのチューブ壁厚効 果、酸化物とCNTの接合界面における微細構 造観察、を目的とした。 超音波照射による局所加水分解により(a)酸

超音波照射による局所加水分解により(a)酸 化スズ (SnO_2) 、(b)二酸化チタン (TiO_2) の内包を試みた。

① 四塩化スズ五水和物(SnCl₄·5H₂O)と濃 塩酸(1M HCl)の混合溶液に超音波照射 することで、局所的な加水分解を発生さ せ、水酸化スズ(Sn(OH)_x)の沈殿物を CNT内外に析出させた。乾燥後、濃塩酸 中で加熱することでCNT外壁の沈殿物を 除去した。但し、沈殿物の除去が不十分 な場合、アルゴン雰囲気での熱処理(ア

図 2. 酸化スズ内包 CNT (a-1) 明視野像 (a-2) 高分解能像[(a-1)の白枠拡大]

ルゴン焼成)も行った。得られた酸化スズ 内包CNTのTEM像を図2に示す。図2 (a-1)か ら、数nmの粒子が内包されていることがわ かる。また、図2 (a-2)からC(002)に沿っ てSn0₂(110)が成長していた。

② 四塩化チタン溶液(9M TiCl₄)は空気中の 水分で容易に加水分解し、TiO₅が生成する ため、濃塩酸溶液に四塩化チタン溶液を少 量滴下することでチタン成分をイオン化 させた。超音波照射、四塩化チタンの濃塩 酸への滴下量、アルゴン焼成などの条件に より、長さ500 nmのCNTの内部に存在する TiO₂粒子の数は、おおよそ5, 10, 20個で 制御できた。酸化チタン内包CNTのTEM像を 図3に示す。図3 (b-1)は10個/500 nmの粒 子充填状態の一部拡大像である。図3(b-2) の制限視野回折から、TiO2(101)がC(002) に沿って成長していたことがわかる。SnO2 内包CNTとTiO2内包CNTの内包酸化物は共 にCNT内壁の界面で六方晶C(002)面[3.376 A]に沿ってヘテロエピタキシャル成長し ていることが制限視野電子線回折により、

図 3. 酸化チタン内包 CNT (a-1) 明視野像 (a-2) 制限視野回折像[(b-1)の円部] 明らかとなった。正方晶 Sn0₂(110)面[3.350 Å]およびルチル型の正方晶 TiO₂(110)面 [3.247 Å]が CNT 内壁に沿って成長していた。 内包物が CNT 内壁に沿って成長し、電気的な 接合界面を形成していたことがわかった。

(2) 酸化物内包 CNT の N02吸着挙動
 1 ppm N02に曝露した際の電気抵抗変化が内包
 されている酸化物の種類によって変化するか
 どうかを調べた。

図 4. CNT (a)、SnO₂-CNT (b)、 TiO₂-CNT (c) の 1 ppm NO₂ に対する 10 分間曝露時の抵抗変化率

図4(a)のCNT単独に比べ、Sn02内包CNT、Ti02 内包CNTの応答速度が緩慢である理由は、空間 電荷層の緩和速度が遅いことに関係すると考 えられる。図3で酸化物はCNT内壁と接合界面 が形成されている。この界面を起点として、 空間電荷層の拡がりがCNT外部に及ぶ場合、そ の拡大作用とCNT外部からのホール注入によ る空間電荷層緩和の現象が拮抗すると考えら れる。したがって、図4(b), (c)のように応答 速度が緩慢になる。一方、TiO2内包CNTの抵抗 減少率は約30%(動作温度:150 ℃)、Sn0₂内包 CNTの抵抗減少率は約40 %(動作温度:150 ℃) であった。抵抗減少率の差は約1.3倍(40/30) であり、この抵抗減少率の差(ガス吸着量 の差)はp-n接合による空間電荷層の広がりの 差に対応すると考えられる。酸化物固有のバ ンドギャップは、Sn0₂が3.6 eV、Ti0₂が3.0 eV である。バンドギャップの差は1.2 (3.6/3.0) 倍であり、前述の抵抗減少率の差(約1.3 倍)と近いことがわかる。酸化物内包CNTの空 間電荷層の拡がりは内包される酸化物のバン ドギャップに依存すると考えられる。

(3) 走査トンネル分光法(STS)による空間 電荷層形成モデルの検証

空気中と真空中でのI-V曲線(図5(a))から得 られる微分コンダクタンス(dI/dV,図5(b)))を見積り、電流変化が存在しない電位領域 をバンドギャップとして、CNTへの酸化スズの 添加による空間電荷層の拡がりを実験的に検 証した。

空気中は酸素濃度が高く(ca. 10⁵ Pa [ca. 2.1×10⁵ ppm])、真空中は酸素濃度が低い(ca. 10⁷ Pa [ca. 0.21 ppt])。酸素濃度は直接的に吸

表1 空気中と真空中のバンドギャップ

Materials	Band gap in air [Eg(air)] / eV	Band gap in vacuum [Eg(vac.)] / eV	Difference of band gap [△Eg] / eV
CNTs	0.89	1.16	-0.27
SnO_2	3.59	3.51	+0.08
CNTs-SnO ₂	1.62	3.73	-2.11

着酸素量に影響する。したがって、空気中と 真空中でのバンドギャップ差(Eg[air] -Eg[vac.]=/Eg)が正の場合はn型半導体とし て振る舞い、それが負の場合はp型半導体とし て振る舞うことを意味する。一方、バンドギ ャップ差が著しく大きければ、空間電荷層の 拡がりが大きいことを意味する。表1から、酸 化スズのCNTへの添加によるバンドギャップ 差は -2.11 eV であり、CNT単独でのバンドギ ャップ差(-0.27 eV)の約10倍も大きい結果 が得られた。

以上より、本研究はおおむね目的を達成した と言える。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計4件)

- M. Omae, <u>T. Hashishin</u>, K. Kojima, J. Tamaki, "The effect of palladium deposition on carbon nanotubes array micro gas sensor", Chemical Sensors, 29, 37-39 (2013).
- ② <u>T. Hashishin</u>, M. Omae, K. Yamamoto, K. Kojima, J. Tamaki, S. Ohara, "P-N junction effects of multi-walled carbon nanotubes array on gas detection", Trans. JWRI, 41, 23-26 (2012).
- ③ M. Omae, <u>T. Hashishin</u>, K. Kojima and J. Tamaki, "Carbon nanotubes array electrodes and gas selectivity", Chemical Sensors, 28, 106-108 (2012).
- ④ M. Omae, <u>T. Hashishin</u>, J. Tamaki and K. Kojima: "Fabrication of Multi-walled Carbon Nanotubes Array Electrodes", Proc. of the 28th sensor symposium, 1, 655-659 (2011).

〔学会発表〕(計15件)

<招待講演(9件)>

- 価新 剛, "カーボンナノチューブア レイによる硫黄系ガスの選択検知", 『新無機膜研究会』(龍谷大学), 2013 年6月3日.
- ② <u>T. Hashishin</u>, M. Omae, H. Ikenoko, T. Kishi, K. Kojima, J. Tamaki, Gas sensor based on multi-walled carbon Nanotubes and its modified with metal oxides, GOSPEL WORKSHOP (Yufuin, Oita, 2013年5月26-29日.
- ③ <u>T. Hashishin</u>, H. Ikenoko, K. Kojima, J. Tamaki, "Modification Effect of Muti-walled Carbon Nanotubes with

Oxides Nanoparticles on Oxygen Adsorption", International Union of Materials Research. Societies-International Conference on Electronic Materials 2012 (Pacifico Yokohama, Japan, 2012年9 月 23-28 日).

- ④ 橋新 剛, "カーボンナノチューブガ スセンサ 一酸化物添加効果—",『京 都産学公連携フォーラム 2011』(京都 工業会館), 2011年11月18日.
- <u>T. Hashishin</u>, M. Omae, K. Kojima and J. Tamaki: "Characteristics of Gas Sensing Electrodes with Multi-walled Carbon Nanotubes Array", Proc. of the 3rd Int. Workshop on Nanotech. Application, 『The 3rd Int. Workshop on Nanotech. Application』, p. 125 (2011年11月 12日).
- ⑥ 橋新剛, "カーボンナノチューブガスセンサ -半導体酸化物との接合効果-",『京都地区大学新技術説明会』(グランキューブ大阪),2010年12月9日.
- ⑦ <u>T. Hashishin</u>, "P-N Junction Effects of Carbon Nanotubes Modified with Semiconductive Oxides on NO₂ Sensing Behavior", 『The 5th International Workshop on Advanced Materials Science and Nanotechnology』[Hanoi, Vietnam] (2010 年 11 月 10 日).
- 橋新 剛, "抵抗型カーボンナノチュー づガスセンサ その機能と応用",『第 223 回新規事業研究会』(東京工業大 学), 2010年9月11日.
- ① <u>橋新</u> 剛, "カーボンナノチューブ-酸化物複合型ガスセンサの p-n 接合効果", 『第 16 回けいはんな 新産業創出交流センター シーズフォーラム』(中之島センタービル), 2010 年 7 月 27日.
- <一般講演(7件)>
- 大前政輝,<u>橋新</u>剛,小島一男,玉置 純、カーボンナノチューブアレイマイ クロガスセンサへのパラジウム担持効 果、『第 54 回化学センサ研究発表会』 (東北大学)、2013 年 3 月 29 日.
- ② M. Omae, <u>T. Hashishin</u>, K. Kojima, and J. Tamaki, "Palladium Nanoparticles Deposited Multiwalled Carbon Nanotubes for Gas Sensor Application", 2012 MRS Fall Meeting & Exhibit (Boston, USA, 2012 年 11 月 25-30 日).
- ③ M. Omae, <u>T. Hashishin</u>, K. Kojima, and J. Tamaki, "Control of Growth

Density of Multi-walled Carbon Nanotubes Array and Its Gas Sensing Properties", Pacific RIM Meeting on Electrochemical and Solid-State Science 2012 (Hawaii, USA, 2012 年 10 月 7-12 日).

- ④ <u>T. Hashishin</u>, H. Ikenoko, K. Kojima, and J. Tamaki, "Enlargement of Space Charge Layer by P-N Junction of Multi-walled Carbon Nanotubes Modified with Tin Oxide Nanoparticles", Pacific RIM Meeting on Electrochemical and Solid-State Science 2012 (Hawaii, USA, 2012 年 10 月 7-12 日).
- 5 大前政輝、<u>橋新 剛</u>、小島一男、玉置 純、 「MWCNT アレイガスセンサのパラジウム担持効果」、トークシャワーイン九州 2012、(福岡、2012年9月6-7日).
- 6 H. Ikenoko, <u>T. Hashishin</u>, J. Tamaki, K. Kojima, "P-N Junction Effect of Multi-walled Carbon Nanotubes Modified with TiO₂ Nanoparticles for NO₂ Detection" Γ Seventh , Workshop International on Supramolecular Nanoscience of Chemically Programmed Pigments (SNCPP11)』[Shiga] (2011年6月11 日).
- ⑦ H. Ikenoko, T. Hashishin, J. Tamaki, K. Kojima, "Preparation of TiO₂-MWNTs Composite for NO_2 Detection", [Sixth International Workshop on Supramolecular of Nanoscience Chemically Programmed Pigments (SNCPP10)] (2010 年6月12日).

〔図書〕(計3件)

- 価新 剛, "カーボンナノチューブの ガスセンサへの応用", 2013 ナノカー ボン技術大全 第 3 編 第 4 章, pp. 53-60 (2012 年 11 月 1 日).
- 2 <u>橋新</u>剛, "カーボンナノチューブガ スセンサ★徹底解説 ~CNT ガス検知 の原理とその高感度化を詳解~",電 子ジャーナル, pp.1~106 (2012 年 7 月 2 日).
- ③ <u>橋新</u><u>剛</u>, "カーボンナノチューブガ スセンサの新局面", 化学センサ, 28, pp. 16-23 (2012).
- 6. 研究組織
- (1)研究代表者
 橋新 剛 (HASHISHIN TAKESHI)
 大阪大学・接合科学研究所・特任研究員
 研究者番号: 20336184