

科学研究費助成事業(科学研究費補助金)研究成果報告書

平成25年 4月 30日現在

機関番号:82118 研究種目:基盤研究 研究期間:2010~2012 課題番号:22510	6 (C) 2 0 1 1 8		
研究課題名(和文)	放射性核種トレーサー8Liによるナノスケールでのリチウム拡散係数測 定		
研究課題名(英文)	Measurements of nanosale lithium diffusion coefficient using radioactive 8Li tracer		
研究代表者 石山 博恒(ISHIYAMA HIRONOBU) 大学共同利用機関法人高エネルギー加速器研究機構・素粒子原子核研究所・研究機関講師 研究者番号:50321534			

研究成果の概要(和文): リチウム 2 次電池材料のリチウム拡散係数を、従来の放射性トレー サー⁸Li 法を改良し、その測定下限値を大幅に改善して直接測定する方法を新たに開拓した。 低速(~8 keV)⁸Li トレーサーを用いて、材料試料表面に対し小角度で⁸Li 崩壊時に放出される α粒子を検出し、その時間強度変化を測定することで拡散係数を導出する手法である。結果と して、従来法の測定下限値を改善可能なことが判明し、他の方法で測定不可能な拡散係数範囲 でリチウム拡散を測定する道を開くことが出来た。

研究成果の概要(英文): We have developed a new in-situ nanoscale diffusion measurement method in solids for secondary lithium-ion batteries using a radioactive ⁸Li tracer. We have found the detection limit of the lithium diffusion coefficient can be improved to the order of 10^{-12} cm²/s by detecting α particles emitted at a small angle relative to a sample surface that is irradiated with a low-energy ⁸Li of about 8 keV.

交付決定額

			(金額単位:円)
	直接経費	間接経費	合 計
2010年度	2,400,000	720,000	3, 120, 000
2011年度	500,000	150, 000	650,000
2012年度	700,000	210,000	910, 000
総計	3, 600, 000	1,080,000	4, 680, 000

研究分野:原子核物理学

科研費の分科・細目:ナノ・マイクロ科学、ナノ材料・ナノバイオサイエンス キーワード:ナノ計測

1. 研究開始当初の背景

近年、リチウムイオン2次電池は、携帯電話、ノートパソコンに搭載可能な充放電が可能な小型蓄電池として爆発的に普及した。 高速充放電、大容量化、安全性の向上、出力 特性、耐久性向上などの電池特性改善のため の開発が全世界の研究機関、企業で行われて いる。リチウムイオンはリチウムイオン2次 電池の電流の担い手でありその電池材料内 部の動的挙動(拡散現象)が特性改善の鍵を 握っている。これに対して、我々は放射性ト レーサー⁶Liによる、電池固体材料内のリチ ウム拡散係数を非破壊的、その場観察可能で 直接的に測定する方法を開拓した (S.C. Jeong, et al., JJAP 47 (2008) 6413.)。この 方法は、 $10^{-9}-10^{-10}$ cm²/s までの拡散係数(1秒 当たり 1 μ m 程度の拡散)を測定可能であった が、リチウム電池の多くの電極材料は、さら に遅い拡散係数をもつと考えられており、そ の測定下限値の改善が求められていた。

2. 研究の目的

放射性トレーサー⁸Li によるリチウム電池 固体材料中のリチウム拡散係数測定法を改 良し、10⁻¹² cm²/s (1 秒当たり数十 nm のナ ノスケールの拡散) までの拡散係数を測定可 能とすることを目的とした。

3. 研究の方法

トレーサーとして使用する⁸Li は半減期が 0.83 秒でβ⁻α崩壊により 2 つのα粒子を同時 放出して崩壊する。従来の方法は、比較的高 い(数 MeV)エネルギーの[®]Li 短寿命核ビーム を放射性トレーサーとして使用し、リチウム 電池材料に照射、10 µm 程度の深さに[®]Li を 植え込み、リチウムが試料表面周辺まで拡散 したのちに[®]Li 崩壊時に放出されるα粒子を 選択的に検出し、その時間強度変化を測定す ることでリチウム拡散係数を非破壊的、その 場測定するという方法であった。この場合、 植え込まれる Li は数μm 程度の幅を持つこと になり、数十 nm の拡散を捕えることは難し い。これに対して、低エネルギー(~10 keV) の[®]Liを用いて、材料試料中に数十 nm 程度に 植え込めば、植え込み時の Li 深さ分布に対 して1秒あたり数十 nm 程度の拡散に対して も大きな違いが生じる。さらに、研究開始当 初、2 つのα粒子を同時計測することで、Li の深さ方向位置情報を感度良くえることを 構想した。しかしながら、測定のためには、 自己支持型の薄膜試料(基板がないもの)が

図1: 改良した測定法の概念図。

必要であり、電池材料に対して汎用性が乏し かった。このため、1つのα粒子を、試料表面 に対して小角度に設置したシリコン検出器 で測定することで、Liの深さ位置に対するα 粒子の試料内飛程を長くし、深さ方向に対し てα粒子のエネルギー変化を大きくするとい う方法を着想した(図1参照)。この方法で、 拡散係数の測定下限値を改良できるかを数 値シミュレーションで検討した。さらに、そ の検証実験を行った。

4. 研究成果

以下数値シミュレーションによる結果を 示す。

図2にリチウム電池正極材料のLiCoO₂(基

板上厚さ300 nm) に[®]Li を照射した場合の深 さ位置分布の時間変化を示す。加速エネルギ ーを8 keV とすると標的表面から約30 nm の

図 2: Li の深さ位置分布の時間依存性 (D = $5 \times 10^{-12} \text{ cm}^2/\text{s}$)。

位置に図中赤丸の分布でドープされる(t = 0s)。この初期分布が時間経過と共にリチウム自己拡散により広がっていく。5×10⁻¹² cm²/ 秒の拡散係数を仮定した場合の0.5-6 秒後の 深さ位置分布を図 2 に示す。⁸Li は試料表面

図 3: α粒子エネルギーの時間依存性(検出 角度 = 10 度)。

で反射し、時間共に試料の奥に移動していく。 図 3 に、試料表面に対して、小角度(10 度) に設置した検出器で測定される、[®]Li 崩壊時 に放出されるα粒子のエネルギー分布の時間 変化を示す。図2で図示される深さ分布にそ れぞれの時間で対応している。検出器を小角 度に設定することで、試料内でのα粒子の飛 程が表面からの深さの1/sinθ倍になるため、 数十 nm 程度の深さ変化に対しても増幅され たエネルギー損失となり、測定可能なエネル ギー変化となる。そのエネルギー分布は、⁸Li が試料表面から奥に拡散することに伴って、 徐々に低エネルギー側にシフトする。ここで、 このシフトに着目し、エネルギー分布上の低 エネルギー領域のみを選択し、そのα粒子強 度の時間変化をみることにする。⁸Li が拡散

するに従って、その時間強度変化は、拡散係 数に依存して増大していくことになる。400 keVから1.15 MeVまでのエネルギー範囲での α 粒子時間強度変化を図4に示す。Liの拡散 係数(D)は、5×10⁻¹⁰から1×10⁻¹² cm²/sと拡 散なし(D = 0)の場合のものを図示した。図 中で左縦軸は α 粒子強度を、右縦軸は、拡散 現象以外の⁸Liの時間強度変化(ビーム照射、 寿命)を除くため、拡散なし(D = 0)の時の α

図 4:0.4 -1.15 MeV のエネルギーのα粒子強 度ならびに強度比の時間依存性(本文参照)。

粒子強度で規格化したα粒子強度比を示して いる。検出器の立体角は 2×10⁻⁴ とし、⁸Li 強 度は 10⁷ 個毎秒とした。また、⁸Li 照射時間 (on)は 1.5 秒であり、4.5 秒はその崩壊を待 つため照射(off)を行わない。on/off を含め た全測定時間は1時間としている。さらに、 試料表面の粗さ(17.5 nm(σ))も条件に入 っている。D=1×10⁻¹² cm²/s のデータ点は上 記条件下での統計誤差を示しており、その強 度比は拡散なし(強度比で「1」に対応)に 比べて、統計誤差(2σ)を超えて大きくなって おり、拡散係数を導出可能である。図に示さ れているようにそれぞれの拡散係数に応じ てα粒子強度比の時間変化が認められ、この 範囲 (D = 10⁻¹⁰ - 10⁻¹² cm²/s)でリチウム拡 散係数を測定可能なことが判明した。

さらに検証実験を JAEA 東海タンデム加速 器施設にて行った。放射性トレーサー[®]Li は 同施設同位体分離器より 8 keV のエネルギー で供給した。測定に用いた試料は、従来の測 定法で拡散係数測定を行った、リチウム 2 次 電 池 固 体 電 解 質 候 補 の 1 つ で あ る Li₂O-V₂O₅-SiO₂ (LVSO)である。従来法では、 LVSO 試料は、300[°]Cの試料温度でほぼ測定下 限値(~10⁻⁹ cm²/s)であった。従って、改良し た測定法により 300[°]C以下でさらに遅い拡散 挙動を示すと予想できたため、この試料を用 いて検証実験を行った。図 5 に常温(20[°]C)か

ら 240℃まで試料温度での測定されたa粒子 強度比を示す。常温では、α粒子強度比の変 化が観察されなかったが、60℃で比較的遅い 時間(t>3 秒)から強度比が増加した。さらに 温度を上昇していく(100, 140℃)とより早い 時間から強度比が立ち上がりはじめその値 も大きくなっていく。より高温(240℃)では 早い時間に強度比の立ち上がりが終わり一 定値になった。これは、試料が基板上に成膜 した約400nmの薄膜試料であるため、試料内 部で[®]Liの反射が複数回おこり、Li 深さ分が 一様になり、α粒子強度比が一定値に近づい たものと推察された。測定後、試料温度を長 時間高温にしたこと(300℃ 6時間)に起因 すると考えられる試料表面変化が観察され、 確定した拡散係数の導出に至っていないが、 数値シミュレーションの結果と対比すると 10⁻⁹-10⁻¹² cm²/s 台の拡散係数によるα粒子強 度比変化が測定されたと考えている。従って、 新測定法では従来法の検出下限を大幅に超え

図4 LVS0 試料で実際に測定されたα粒子強 度比の温度依存性。

て測定できることが明らかとなった。本課題 で開拓した新測定法により、近年開発された 固体NMR法、中性子非弾性散乱法でも測定不可 能な拡散係数範囲でリチウム2次電池固体材 料中のリチウム拡散を測定する道を開くこと が出来た。

今後は、新測定法により、未だにリチウム 拡散係数が確定できていないリチウム2次電 池正極材料である LiCoO₂の拡散係数測定を 行いたい。また、他のリチウム2次電池電極 材料の拡散係数測定を行う予定である。さら に、本測定法は、材料試料を2層化し拡散係 数測定を行うことで、材料固体/固体界面の リチウム拡散挙動を直接観察出来る可能性 がある。今後、界面の直接観察を目指し、測 定法のさらなる開拓研究を行う予定である。 5. 主な発表論文等 (研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計 8件)

 <u>H. Ishiyama, S. C. Jeong</u>, Y. X. Watanabe, <u>Y. Hirayama</u>, N. Imai, H. Miyatake, M. Oyaizu, I. Katayama, <u>M. Sataka</u>, <u>A. Osa</u>, Y. Otokawa, M. Matsuda, H. Makii, [「]Toward Online Nanoscale Diffusion Measurements Using Radioactive ⁸Li Tracer」, Jpn. J. Appl. Phys. 52 (2013) 010205.

〔学会発表〕(計 5件)

- ① 石山 博恒、「放射性核種トレーサー8Li による電池材料中のナノスケールリチウム拡散測定~現状と将来~」、ワークショ ップ「J-PARC 核変換実験施設の多目的利 用」、2013/3/18、TKP 御茶ノ水カンファレンスセンター、東京都。
- (2) <u>H. Ishiyama, S. C. Jeong</u>, Y. X. Watanabe, <u>Y. Hirayama</u>, N. Imai, H. Miyatake, M. Oyaizu, I. Katayama, <u>M. Sataka</u>, <u>A. Osa</u>, Y. Otokawa, M. Matsuda, H. Makii, 「In-situ diffusion measurements in solids using short lived radioactive tracers of ⁸Li and ²⁰Na J , XVI International Conference on Electromagnetic Isotope Separators and Techniques Related to their Application (EMIS 2012), 2012/12/2-7, Matsue, Japan.
- ③ S.C. Jeong, H. Ishiyama, N. Imai, Y. Hirayama, H. Miyatake, Y.X. Watanabe, I. Katayama, H. Kawakami, M. Sataka, S. Okayasu, S. Ichikawa, K. Nishio, S. Mitsuoka, T. Nakanoya, M. Yahagi, T. Hashimoto, 「 Online Diffusion Experiments in Solids by implanting Radiotracer Beam of ⁸Li] , Eights International Symposium on Swift Heavy Matter (SHIM Ions in 2012). 2012/10/24-27, Kyoto Univ., Japan.
- ④ 石山 博恒、「放射性核種トレーサー8Li によるナノスケールでのリチウム拡散係 数測定」,第54回固体イオニクス研究会・ 第14回超イオン導電体物性研究会、 2010/5/26,徳島大学。

〔その他〕 ホームページ http://kekrnb.kek.jp/

- 6. 研究組織
- (1)研究代表者

石山 博恒(ISHIYAMA HIRONOBU)
大学共同利用機関法人高エネルギー加速
器研究機構・素粒子原子核研究所・研究機
関講師
研究者番号: 50321534

(2)研究分担者 なし

(3)連携研究者

鄭 淳讃(JEONG SUNCHAN) 大学共同利用機関法人高エネルギー加速 器研究機構・素粒子原子核研究所・教授 研究者番号:00262105

平山 賀一 (HIRAYAMA YOSHIKAZU) 大学共同利用機関法人高エネルギー加速 器研究機構・素粒子原子核研究所・助教 研究者番号:30391733

須貝 宏行(SUGAI HIROYUKI)独立行政法人日本原子力研究開発機構・原子力科学研究所・研究副主幹研究者番号:80391291

長 明彦(OSA AKIHIKO) 独立行政法人日本原子力研究開発機構・原 子力科学研究所・研究主幹 研究者番号:80343929

左高 正雄 (SATAKA MASAO) 独立行政法人日本原子力研究開発機構・原 子力科学研究所・研究主幹 研究者番号:70354826