

科学研究費助成事業(科学研究費補助金)研究成果報告書

平成 25 年 4 月 1 日現在

機関番号:12612
研究種目:基盤研究(C)
研究期間:2010~2012
課題番号:22560003
研究課題名(和文) ErYSiOシリケート結晶の発光過程におけるErイオン間エネルギー 移動の評価
研究課題名(英文)Evaluation of energy migration between Er ions in the fluorescence process of ErYSiO silicate crystals.
研究代表者
木村 忠正 (KIMURA TADAMASA) 電気通信大学・名誉教授 研究者番号:50017365

研究成果の概要(和文):高密度 Er(1.6×10²²/cm³)を含むエルビウムシリケート(Er₂SiO₅) は、シリコンフォトニクスにおける光源,光増幅器の材料として有望であるが,Er間のエネル ギー移動が非発光遷移の要因となり, Er の 1.53 μm 発光遷移の効率を制限している。本研究で は Er, Y₂₋,SiO₅結晶を用いて Er 間距離(Er 密度 x)を変え,エネルギー移動による非発光遷移 の要因,大きさを評価した。x~0.1 (Er 密度~1×10²¹/cm³) でエネルギー移動による非発光が ほぼ無くなった。長さ500μmの光導波路を作製し、30dB/cmの光利得を得た。

研究成果の概要(英文):Erbium silicate (Er₂SiO₅) having 1.6×10²²/cm³ Er density is expected as a material for optical sources and optical amplifiers operated at 1.53 µm in silicon photonics. Due to short Er-Er distances, however, the energy migration limits the luminescence efficiency. We changed the Er-Er distance by using Er_xY_{2-x}SiO₅ crystals and evaluated the mechanisms and magnitudes of nonradiative transitions caused by energy migration. We found that nonradiative transitions due to energy migration were almost reduced at x \sim 0.1 (Er \sim 1 \times 10²¹/cm³). We formed an optical waveguide of 500 µm length and obtained an optical gain of 30dB/cm.

			(金額単位:円)
	直接経費	間接経費	合 計
2010年度	2, 000, 000	600, 000	2, 600, 000
2011 年度	700, 000	210, 000	910, 000
2012年度	800, 000	240, 000	1, 040, 000
年度			
年度			
総計	3, 500, 000	1, 050, 000	4, 550, 000

交付決定額

研究分野:工学

科研費の分科・細目:応用物性・結晶工学

キーワード:(1)シリコンフォトニクス (2) Er シリケート(3)4f 内殻遷移 (4) エネルギ ーマイグレーション (5)協同アップコンバーション (6)光学利得 (7)シリコン光増幅器 (8) シリコン発光素子

1. 研究開始当初の背景

希土類元素は、シリコン、酸素、および、そ の他の元素と化合して,絶縁体,導電体,磁性 ため,種々のデバイス材料としての応用が可能

体,半導体を形成し、それぞれに、高伝導率、 高誘電率,磁性,発光などの特異な特性を示す である。我々は, Si 基板上に 0.86nm の周期 の層構造を示す高配向のエルビウムシリケ ート結晶膜(粒径が数十 nm の多結晶)の作 製と非常に鋭いスペクトルの発光の観測に 世界で初めて成功した。このエルビウムシリ ケート結晶膜は以下の特徴を示すことで,シ リコンフォトニクスにおける光増幅,発光源 として期待できるとの観点から研究を進め てきた。

エルビウムシリケート結晶は Si, 0, Er か らなる結晶で、Er が構成元素として 1.6×10²²/cm³の高密度(Er₂SiO₅で25at%)含 まれ, Si 基板上に作製できる。高配向性の周 期 0.86nm の層構造を持ち, Er 原子が結晶内 に一様配列し、高密度であるにもかかわらず、 Er 原子の凝縮, 析出, 結晶欠陥がほとんど見 られない。Er の 4f 準位間の遷移に基づく 1.53μm の高強度の発光が得られ, その発光 スペクトルは鋭い(線幅 8nm)微細構造を示 し,単一発光中心が形成されている。これよ り, エルビウムシリケート結晶を用いて, 1.53µm 帯における発光素子,光増幅素子を 1mm以下のサイズでSi 基板上に実現できる可 能性がある。一方, これ迄の Er をドーパン トとするシリコン系材料では、1×10¹⁹/cm³程 度の Er 密度が限界で、それ以上の高密度 Er ドープでは, Er のクラスタリング, 析出, 結 晶欠陥形成により,いわゆる濃度消光(発光 強度の減少)が生じる。この Er 濃度の限界 のため、Er ドーピング方法では小型の増幅, 発光デバイスの作製が困難である。

以上の特徴を持つ Er₂SiO₅ であるが,高密 度 Er のため、非発光遷移の要因となる Er イ オン間のエネルギー移動(エネルギーマイグ レーション EM: energy migration), および, 協同アップコンバーション CU: cooperative upconversion)が避けられない。実際に、フ オトルミネセンスで観測される 10-20 us の 蛍光寿命は、低濃度 Er ドープシリコン系材 料 (SiO₂, Si-rich SiO₂など) における数 ms 以上の蛍光寿命に比べて非常に短く, Er 間の エネルギー移動に起因する非発光中心での 遷移の存在が推測された。また、高光密度励 起フォトルミネセンスで、高い 4f 電子準位 からの遷移である緑、赤、その他の波長での 発光が観測されており、協同アップコンバー ションの存在が確認されている。

このような研究背景から, Er_2SiO_5 における Er イオン間のエネルギー移動を定量的に評価し非発光遷移を抑制することが, Er_2SiO_5 シ リケートを用いた超小型1.53 μ m高効率発光 素子,高利得光増幅器の実現に必要であるとの判断が,本研究の動機である。

2. 研究の目的

Er₂Si0₅結晶は, Er が構成要素元素であり,

結晶中で規則的,均一配列をしている。Er 密 度は1.6×10²²/cm³,密度から求めた Er-Er 間 の平均距離は 0.37nm である。この距離は, 電気双極子遷移による Er-Er 間の相互作用が 生じる臨界距離(1~2nm)より短い。このた め, 第 1 励起準位(⁴I_{13/2})に励起された Er が基底準位(⁴I_{15/2})に遷移する際に放出する エネルギー(波長~1.53µm)がすべて光子 の放出とはならず、一部が近隣の基底準位 (⁴I_{15/2}) にある Er, あるいは, 励起準位 (⁴I_{13/2}) 及びその上の準位) にある Er を励起する。 前者をエネルギーマイグレーション (EM)と いい, 励起された Er のエネルギーがある確 率で Er イオン間をマイグレーションし, 最 終的に欠陥や不純物の非発光中心でエネル ギーを失う非発光遷移が生じる。一方、後者 は高励起で多くの Er が励起状態にある場合 に観測されるもので、励起された Er のエネ ルギーが近隣の励起状態にある Er (第1励起 準位 ⁴I_{13/2} や更に高いエネルギー準位) をさ らに高い準位に励起する。結果として 1.53µm より短波長での発光遷移あるいは非 発光遷移となる。これを協同アップコンバー ション(CU)という。EM、CU 共に目的とする 1.53μmの発光を下げる要因となる。

一方,発光強度を上げるためには Er 密度 は高いほうがよく,そのトレードオフとして の1.53 μ m発光,光増幅を最大にする最適 Er 密度を求める。Er 密度 (Er-Er 間距離)を 変化させる方法として,原子番号 39 の希土 類 Y (yttrium)で Er を一部置き換えた Er_xY_{2-x}Si0₅結晶膜を作製する。Y (yttrium) は,原子番号 39 の4f 電子を含まない希土類 元素で,Er と同様に 3 価にイオン化し,イオ ン半径は Er の 103pm とほぼ同じ 105pm であ り,Er_xY_{2-x}Si0₅結晶膜は Er₂Si0₅結晶と同一結 晶構造を維持し,自己組織化による高配向し たナノ周期層構造をとることが X 線回折 (XRD)で確かめられている。また,第 1 励起 準位 Er から Y へのエネルギー移動は無い。

例えば、Er 密度を 10^{21} /cm³に下げるとEr-Er 間平均距離は 1nm となり、距離の 6 乗に反比 例する電気双極子相互作用は Er₂SiO₅のおよ そ 1/250 となると予想される。Er ドープ光フ ァイバー増幅器の Er 濃度~ 10^{18} /cm³、長さ~ 数 m 程度との単純比較で考えると、mm オーダ ー以下の長さの光導波路増幅器で利得を得 るには Er 密度~ 10^{21} /cm³が必要となる。

3. 研究の方法

(1) Er 間のエネルギー移動と非発光遷移評価

本研究では、 $Er_x Y_{2-x} SiO_5$ 結晶膜の Er 密度, すなわち, Er-Er 間距離を変化させ, Er 4f 内殻遷移による 1.5 μ m の発光, 蛍光寿命の変 化を調べ, Er イオン間のエネルギー移動によ る非発光を定量的に評価し,EM,CUがどの程 度 Er の 1.53 μ m 発光効率を下げる要因とな っているかを調べる。Er 密度減少による EM, CU の抑制効果と Er 発光中心の減少とのトレ ードオフとなる最適 Er 密度を評価する。こ の最適 Er 密度が,Er ドープ Si 系材料(例え ば,SRS0:Si-rich silicon oxide)で急 激な濃度消光を生じる~10¹⁹/cm³より2桁高 い~10²¹/cm³であれば,1mm以下の活性領域の 長さで 1.53 μ mの光利得が得られると期待で きる。

(2) 複数の希土類元素によるエネルギー授 受の制御と多波長発光評価

多波長発光,増幅を念頭に,複数の希土類 イオン (RE)を含む RE₂SiO₅自己組織化シリ ケート結晶の作製を試み,広い波長範囲での RE の 4f 内殻遷移による発光を調べることを 目指した。我々が開発したゾルゲル法,ある いは、レーザーアブレーション法等による高 配向した層状構造の自己組織化 Er₂SiO₅結晶 作製技術を Er 以外の希土類イオン(RE)に適 用し,高密度の希土類イオンを含む RE₂SiO₅ 結晶作製の可能性,複数の RE イオン間のエ ネルギー授受,個々の RE イオンに特有の波 長を含む複数波長での発光の実現を目的と した。

(3) 光導波路の作製と光利得の測定

次のステップとして,最適化した Er 密度 の $Er_x Y_{2-x} SiO_5$ 結晶をコアとする光導波路を設 計,作製し,光導波特性,光利得,損失の評 価を行う。

4. 研究成果

(1) Er_xY_{2-x}SiO₅の Er 間エネルギー移動の定量 的評価

Er_xY_{2-x}SiO₅結晶を作製し, Er 密度(Er-Er 間距離)に対する 1.53 μm の発光強度, 蛍光 寿命の評価からエネルギーマイグレーショ ン EM, アップコンバーション CU を定量的に 評価した。シリケート薄膜結晶の作製には, ゾルゲル法,原子レベルで堆積制御可能なレ ーザーアブレーション法,大面積高速堆積可 能な酸素ラジカル支援スパッタ法 (RAS: radical-assisted sputtering)を用いた。EM に起因する非発光遷移は、単に、Er-Er 間距 離だけでなく、非発光中心となる欠陥密度に 依存する。Er_xY_{2-x}SiO₅結晶では, Er ドープ材 料と比べて非発光中心となる欠陥密度が非 常に小さく、粒界が主たる非発光中心である 可能性が高い。結晶作製方法、作製条件の違 いによる Er_xY_{2-x}SiO₅結晶の結晶性, 配向性, 粒径の大きさと発光特性との関連を調べ、結 晶粒界がエネルギーマイグレーションに起因 する非発光中心であるかどうかを調べた。

 ゾルゲル法によるEr_xY_{2-x}Si0₅結晶膜の特性 ゾルゲル法により作製したEr,Y₂₋SiO₅シリ ケート結晶膜のEr組成(xの値)を変化させ、 Er³⁺の4f-内殻遷移の1.53umフォトルミネセン ス (PL) 発光強度, その蛍光寿命 (τ_f)の変 化を調べた。励起光は0.98µmで,低励起条件 (基底状態のEr³⁺>>励起状態のEr³⁺)下で行っ た。Er密度が x=2 (1.6×10²²/cm³) から0.1 (8×10²⁰/cm³)の範囲では,Er密度の減少と ともにPL強度 I_{Er} , 蛍光寿命 τ_{f} 共に増加し, x~0.1で蛍光寿命 τ_f~2msが得られた(図1)。 τ_{f} ~2msの値は、 10^{18} /cm³程度のErドープシリ カ, SRSO (Si-rich silicon oxide) における 蛍光寿命と同程度である。この結果から, Er_sSiO_s結晶ではエネルギーマイグレーション が大きな非発光遷移誘起要因として働いてお り, Er-Er間距離を~1nm程度(Er密度~1×10²¹ /cm³, x=~0.1) に広げたEr_xY_{2-x}SiO₅結晶では, EMがほぼ抑制され、非発光遷移が無視できる ほど小さくなることが明らかとなった。 Er₂SiO₅の1.53 µ mPL強度と比較したx=0.1での PL強度は、試料の厚さや作製プロセスに依存 するが、10倍~30倍の結果を得ている。以上 のように、Er_xY_{2-x}SiO₅結晶(x=~0.1)では、Er ドープ試料における~1×10¹⁹ /cm³という限 界濃度の2桁高い~1×10²¹/cm³というEr密度 でありながら濃度消光を示さず,強い1.53μm の発光が得られた。

図 1 Er_xY_{2-x}SiO₅ 結晶のフォトルミネセンス 強度と蛍光寿命の Er 密度 x 依存性。

レーザーアブレーション法による Er_xY_{2-x}SiO₅ 結晶膜の特性

自己組織化温度低減,良質の結晶を得る目 的で、コンピュータ制御により原子層のオー ダーで堆積可能なレーザーアブレーション法 (別名、PLD: Pulsed Laser Deposition)で、 良質なシリケート膜の作製を試みた。その結 果、図2に示すように、PLD法で作製した $Er_xY_{2-x}SiO_5$ 結晶では、ゾルゲル試料の同一Er 密度と比較すると、発光強度も蛍光寿命もお よそ1桁高く、PLD試料では $N_{Er}=3\times10^{21}/cm^3$ で1.53 μ m発光の蛍光寿命 τ_f が~1msを示し、

この高いEr密度でもエネルギーマイグレーシ ョンEMは生じているものの、EMによる非発光 が少ないことが明らかとなった。(ゾルゲル 試料では N_{Fr}=~3×10²⁰/cm³でτ_f~1msに到 達)。ゾルゲル膜とPLD膜とでのこの違いの要 因は、結晶粒径がゾルゲル膜の約30~40nmに 対し、PLD膜では70~100nmと大きいことによ る。すなわち、EMそれ自身は非発光遷移の直 接の要因ではなく, EMの結果, 非発光中心に エネルギーがマイグレートし消失する、その 非発光中心が結晶粒界であると理解できる。 この考えの下に理論的解析モデルを構築し, 図2におけるゾルゲル試料とPLD試料のとの違 いを粒径の違いで定量的に説明した。以上の 結果は、粒径の大きな、あるいは、粒界の少 ないEr, Y_{2-x}SiO₅結晶を作製すれば、~10²²/cm³ の高密度Erでも、EMに起因する非発光遷移を 十分に小さくできると予想される。

図 2 PLD 法とゾルゲル法で作製した Er_xY_{2-x}SiO₅ 試料の 1.53 µ m 蛍光寿命の Er 密度依存性の比較。

③ RAS法によるEr_xY_{2-x}SiO₅結晶膜作製と散乱 の抑制

RAS法は、Er, Siの原子層スパッタ堆積と表 層酸化を繰り返すことで、Er_xY_{2-x}SiO₅結晶の積 層周期0.86nmに合わせた逐次堆積法で、大面 積にスムーズな酸化物の作製を可能とする。 このRAS法を用いてEr_{0.45}Y_{1.55}SiO₅光導波路を 作製した。SiO₂/Si基板上に幅4μm,厚さ30nm のSiによる光ガイド層を作製し、500nm厚さの Er_{0.45}Y_{1.55}SiO₅結晶膜をスパッタ堆積し、堆積 後、1200℃、10分間のアニールを施した。最 後にプラズマCVDによりSiO₂クラッド層を堆 積させた。この光導波路の光閉じ込め係数 Γ は0.71である。導波路端からレンズ付ファイ バーで集光した1.48μm光、20mWを入射し、光 導波路上面からのCCD像を観測した。協同アッ プコンバーションCUによるEr³⁺イオンからの

赤 (${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$), 緑 (${}^{2}H_{11/2}$, ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$), 青 (²H_{9/2}→⁴I_{15/2})の発光が観測される。CUによ る緑の発光は入力端から指数関数的に減衰し、 およそ140µmに達した。この減衰特性は, 1.48 µm入射光の散乱,吸収,CU,EM等による 減衰に関連している。図3にCUによる緑色の発 光を示す。比較のためのゾルゲル試料では, 緑色発光の伸びは90μm (Er_{0.5}Y_{1.5}SiO₅, Γ=0.54, 厚さ=250nm) で, この結果の差は, RAS試料における1.48μm入射光の散乱損失が 小さいことを示している。ゾルゲル膜の散乱 損失係数150cm⁻¹に対しRAS膜では77cm⁻¹であ った。なお、RAS膜の全損失係数は149cm⁻¹ で あった。RAS試料の散乱減衰係数の77cm⁻¹は, 依然として大きく、スパッタ条件等の改善の 余地がある。

RAS d=500nm Γ=0.71

x₀=<mark>54.3</mark>μm

Sol-gel d=250nm Γ=0.54

 $x_0 = 45 \mu m$

図 3 協同アップコンバーション CU による 光導波路に沿った緑色発光の比較(ゾルゲ ル試料, RAS 試料)。入力光波長は 1.48 µ m。

(2) 協同アップコンバーション係数の評価

先に述べたように、高密度の Er を含む Er シリケートにおいて、Er 密度を下げることに より CU が大きく抑制されることを確認した。 この協同アップコンバーション係数 C_{up}の評 価は、光増幅、発光に最適な Er 密度を決め る上で重要なファクターである。Er³⁺の 4f 準 位間の遷移に対する速度方程式に基づくシ ミューレション結果と、緑の CU 光強度の 1.48 μ m 励起光強度依存から求めたコンバー ション因子 n~1.87 の実験結果を用いて、 N_{Er}=3.6×10²¹/cm³ の場合に、C_{up}~3.5×10⁻¹⁷ cm³/s 程度の値が得られた。この値は、Er₂0₃ や Al₂0₃中の高 Er ドープ試料における報告値 の C_{up} ~5×10⁻¹⁶ cm³/s より一桁小さい。また, 最近,レーザーアブレーション法で作製した Er シリケートのエネルギーマイグレーショ ン,光学利得の評価結果からは,更に小さな C_{up} ~10⁻¹⁸ cm³/s が期待される結果を得ている。 C_{up} ~10⁻¹⁸ cm³/s は Er 密度~10²¹/cm³ 台でも CU による損失が抑えられ,光学利得が得られ るに十分小さい値である。

(3) 光機能性の出現―複数の希土類イオンを 含むシリケート結晶膜の作製と発光の観測

Er に替えて他の希土類 (RE) イオンを含む RE₉SiO₅シリケート結晶膜をゾルゲル法で作 製し, Er₂SiO₅に見られる高配向した層構造結 晶を得、希土類特有の発光が得られると予想 される。本研究では、Yb を含む Er シリケー トについて検討した。高密度 Er, Yb を構成 元素として含むシリケート結晶において,こ の Yb のセンシタイザー (sensitizer) 効果 としての Yb³⁺から Er³⁺へのエネルギー移動に よる Er³⁺ 1.53 µm 発光の増強効果とともに, Ybの0.98µm発光の挙動を見た。図4に示す ように、0.98µm 光励起フォトルミネセンス は、Er, Yb を含むシリケート Er_{2-v}Yb_vSiO₅ (x=1.9) で, Er₂SiO₅ と比較して×200 の 1.53μm の発光強度の増加が得られ, Er-Er 間の EM 抑制とともに, Yb⇒Er のエネルギー トランスファーによる高い増感効果がある ことを明らかにした。

図 4. $Er_{2-x}Yb_xSiO_5$ 結晶における 1.53 μ mm 発光強度の x 依存性。980nm 励起で Er_2SiO_5 結晶の×200 の発光強度が得られた。

(4) Er_xY_{2-x}SiO₅ 光導波路作製と光利得測定

シリコンフォトニクス結晶中にシリコン スロットを組み込んだスロット型光導波路 を設計、作製し、スロット内にゾルゲル法に より $Er_xY_{2-x}SiO_5$ をコアとして埋め込んだ。ス ロットに埋め込まれた Er シリケートの幅は 4 μ m、高さは 370nm、上下に SiO_2 のクラッ ド層を形成した。波長 980nm の励起光の照射 幅をスリットにより導波路長に沿って0~ 450 μ m と変化させる VSL (Variable Stripe Length)法により光利得を測定した。その結 果,図5に示すように励起光パワー6.2kW/cm² 以上で光利得が生じ、8.7kW/cm² で 30dB/cm の光利得を得た。以上のように、Er 密度を最 適化した $Er_xY_{2-x}SiO_5$ 結晶薄膜が、Er1.53 μ m の 光増幅、レーザ素子材料としての可能性があ ることを実験的に示した。

図 5. VSL 法により測定した Er_{0.5}Y_{1.5}SiO₅ 埋め込み Si スロット光導波路における光 利得。

5. 主な発表論文等

(研究代表者,研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計3件) ①Isshiki, Hideo; Zulkefli, Zul Izwan Bin; Nakajima, Takayuki; Sato, Takuya; Kimura, Tadamasa, Emission and optical properties of Si slot Er_xY_{2-x}SiO₅ waveguides, Nanophotonics and Micro/Nano Optics, Proceedings of the SPIE, Vol. 8564, article id. 856404, 2013, 6 pages, 2013) 査読有 doi: 10.1117/12.2001322 ②X. J. Wang, B. Wang, L. Wang, R. M. Guo, H. Isshiki, T. Kimura, and Z. Zhou, Extraordinary infrared photo-luminescence efficiency of $\mathrm{Er}_{0.1}\mathrm{Yb}_{1.9}\mathrm{SiO}_5$ films on $\mathrm{SiO}_2/\mathrm{Si}$ substrates, A.P.L., Vol. 98, 2011, pp. 071903-1-071903-3 査読有, doi:10.1063/1.3554750 ③ Wang, X.J. ; Yuan, G. ; Isshiki, H. ; Kimura, T.; Zhou, Z., Photoluminescence enhancement and high gain amplification of Er_xY_{2-x}SiO₅ waveguide, J. A. P. Vol. 108, Issue: 1, 2010, pp.013506-1 - 013506-4 査 読有, doi:10.1063/1.3446822

〔学会発表〕(計 47 件)

国際学会(24件,主要なもの14件記載) ① Isshiki, Hideo et al., Emission and optical properties of Si slot Er_xY_{2-x}SiO₅ waveguides, Nanophotonics and Micro/Nano Optics, 5-7 November 2012 Beijing, China. 2 T. Nakajima et al., Fabrication of Er silicate crystalline waveguide by directed self-assembly approach using radical assisted sputtering, SSDM 2012, A-2-6 (2012.9.25)), Sept. 25-27, 2012, Kyoto International Conference Center, Kyoto, Japan ③ Takayuki Nakajima et al., Suppression of scattering loss in Erbium-Yttrium Silicate crystalline waveguide fabricated by radical-assisted sputtering, GFP 2012, ThP2, San Diego, CA, (2012.8.30), pp. 243-245、USA ④ Tadamasa Kimura et al., High Optical Gain in Er_xY_{2-x}SiO₅ Slot Waveguides and Possibility for Compact Light Amplifiers and Optical Sources, ICOOPMA 2012 (Fifth International Conference on Optical, Optoelectronic and Photonic Materials and Applications), June 3-7, 2012, Nara Prefectural New Public Hall, Nara, Japan (2012. 6. 7) (**invited**) JAPAN. (5) T. Sato et al., Observation of 30dB/cm gain in Si photonic crystal slot Er_xY_{2-x}SiO₅ waveguide", Conference: 8th IEEE International Conference on Group IV Photonics - GFP, pp. 1-2, 14-16, Sept. 2011. The Royal Society London, United Kingdom. 6 H. Isshiki et al., $Er_{x}Y_{2-x}SiO_{5}$ compact waveguide slotted into Si photonic crystal, E-MRS 2011 Fall Meeting, Symposium : J Rare earth doped semiconductors and nanostructures for photonics", 19. September 2011, Warsaw, Poland. Tadamasa Kimura et al., Enhanced Er³⁺ luminescence by control of energymigration in Er_xY_{2-x}SiO₅ crystalline systems, E-MRS 2011 Fall Meeting, Symposium: J "Rare earth doped semiconductors and nanostructures for photonics", 18. Sept. 2011, Warsaw, Poland (invited). 8 Fangli Jing et al., Energy Transfer in Highly Oriented Er_xYb_yY_{2-x-y}SiO₅ Thin Films Fabricated by Pulsed Laser Deposition, MRS 2011 Spring Meeting V1.10, Boston, April 28-29 (2011), USA 9 Hideo Isshiki et al., Characterization and Photonic Application of Er_xY_{2-x}SiO₅ Crystals Prepared by

Layer-by-layer Deposition, MRS 2011 Spring Meeting V1.6, April 28-29, (2011), Boston, USA.

 $\begin{array}{ccc} \textcircled{10} & \underline{\text{Hideo Isshiki}} \text{ et al., Formation and} \\ \text{Carrier Mediated Excitation of } \text{Er}_x Y_{2-x} \text{SiO}_5 \\ \text{Nanocrystallites in Si-rich Silicon Oxide} \\ (\text{SRSO}), & \text{MRS 2010 Fall Meeting, Group IV} \\ \text{Semiconductor Nanostructures and} \\ \text{Applications, November 30, 2010, Boston,} \\ \text{USA.} \end{array}$

 $\begin{array}{cccc} \textcircled{II} & \underline{\text{H. Isshiki}} \text{ et al., Highly oriented} \\ & Er_xY_{2-x}SiO_5 \text{ crystalline thin films} \\ & \text{fabricated by pulsed laser deposition,} \\ & \text{IEEE International Conference on Group IV} \end{array}$

Photonics - GFP, 1-3, Proceedings, pp.311-313, Sept.2010 at the Friendship Hotel, Beijing, China.

(2) <u>T.Kimura</u> et al., Evaluation of energy migration of $\text{Er}_x Y_{2-x} \text{SiO}_5$ and optical gain at 1.54 μ m, EMRS 2010 Spring Meeting, Session K: Rare earth doped materials for optical based technologies, 07 June 2010, Strasbourg, France.

(3) Yasuhito Tanaka et al., $Er_xY_{2-x}SiO_5$ crystals prepared by the layer-by-layer deposition, EMRS 2010 Spring Meeting, Session K: Rare earth doped materials for optical based technologies, 07 June 2010, Strasbourg, France.

Hideo Isshiki et al., Role of energy transfer for the decay dynamics in Er_xY_{2-x}SiO₅ crystals, EMRS 2010 Spring Meeting, Session K: Rare earth doped materials for optical based technologies, 11 June 2010, Strasbourg, France.

国内学会 (計 23件) (略)

〔その他〕 ホームページ等 http://flex.ee.uec.ac.jp/

研究組織
研究代表者
木村 忠正 (KIMURA TADAMASA)
電気通信大学・名誉教授
研究者番号: 50017365

(2)研究分担者 一色 秀夫 (ISSHIKI HIDEO)

電気通信大学・大学院情報理工学研究科・ 教授 研究者番号:60260212