

科学研究費助成事業(科学研究費補助金)研究成果報告書

平成25年6月24日現在

機関番号:12501
研究種目:基盤研究(C)
研究期間:2010~2012
課題番号:22560262
研究課題名(和文) ハイブリッド電源駆動システムの性能向上法の研究
研究課題名(英文) Study on a method to improve the performance of hybrid powered
traction systems.
研究代表者
近藤 圭一郎(KONDO KEIICHIRO)
千葉大学・大学院工学研究科・准教授
研究者番号:10425890

研究成果の概要(和文):

エネルギー源と蓄電装置の2つの電源を用いて電動機を駆動するハイブリッド電源駆動 システムに関して,不均等3レベルインバータ方式とその制御方法の提案を行うとともに, 理論および実験によりその特性を明らかとした。その結果,従来の DC/DC コンバータを 用いる方式に比べ,効率が高く,電力変換回路の小型軽量が期待できる不均等3レベルイ ンバータが,鉄道車両や自動車をはじめとする慣性負荷駆動に十分な性能が発揮できるこ とを明らかとした。

研究成果の概要(英文):

An unbalanced input voltage three level inverter which boosts up the input voltage by means of energy storage devices is proposed with its control method. Their performance and control characteristics are examined by both theory and experiment. Those studies verify that a more highly efficient and down sized power converter for hybrid powered traction systems than a conventional system such as the one with DC/DC converters.

			(金額単位:円)
	直接経費	間接経費	合 計
2010年度	1,600,000	480,000	2, 080, 000
2011年度	1, 400, 000	420,000	1, 820, 000
2012年度	500,000	150,000	650,000
年度			
年度			
総計	3, 500, 000	1,050,000	4, 550, 000

研究分野:工学

科研費の分科・細目:

キーワード:ハイブリッド電源駆動システム, DC/DC コンバータ, 不均等3レベルインバー タ,鉄道車両駆動,自動車駆動

1. 研究開始当初の背景

電池やキャパシタ等の蓄電媒体とエンジン発電機や燃料電池あるいは電力供給設備 等の他の電源を用いて電動機を駆動するハ イブリッド電源駆動システムにおいて,各電 源からの出力を適切に制御することにより, 省エネルギー化を目指す研究が盛んに行われていた。

ハイブリッド電源駆動システムでは一般 的に,後述の図2に示すように,電源から負 荷である電動機までパワーフローは複数の 電力変換器を通るため,各機器での損失や, 機器の数が多い等の課題も有していた。

そのため、より小型軽量で低損失化が期待 できる方式として、後述の図1に示すような、 2つの直流電源から直接、電動機を駆動でき る直接変換型の小型軽量・低損失なハイブリ ッド電源駆動システム用電力変換回路が提 案されていたが、従来方法に対する優位性や、 パワーフローも含めた具体的な電動機の制 御方法等は明確になっていなかった。

2. 研究の目的

そこで本研究では、以下の2点を明らかに することを目的とした。

(1)既存方式の特性把握

後述の図2に示すような,既存の DC/DC コンバータを用いる方式について,直接形電 力変換装置を用いる方式と比較し得る規模 および実験条件にて,既存方式の動作特性を 明らかとする。

(2)電動機制御に適した直接変換回路方式の 制御法の確立

直接変換回路方式において,電動機電圧を 高め,スイッチング回数を低減できる PWM 制御法を適用した場合の,具体的な電動機制 御とパワーフロー制御方法を検討・検証し, その特性と構成法を明らかとする。

これらを通じて,ハイブリッド電源駆動シ ステムの小型・軽量,省エネルギー化を図り, 蓄電媒体を利用した省エネルギーな駆動技 術の体系化に寄与すること目的とする。

3.研究の方法

図1に示す直接変換回路(不均等3レベル インバータと呼ぶ)スイッチング回数を低減 し,電源の電圧利用率を向上できるスイッチ ング方法を適用した,不均等3レベルインバ ータをハイブリッド電源駆動システムに適 用した際の駆動特性について,DC/DCコンバ ータを用いた在来方式との比較検証を通し て明らかとする。初年度は,在来方式のうち, いくつかの回路方式について理論的に利害 得失を明らかにした上で,一つないし二つ程

度の方式について、1kWクラスの実験システムを構成し、その制御特性を明らかとする。

4. 研究成果

(1)既存方式の回路構成および制御性能の検 討

①回路構成

エネルギー源と蓄電素子を接続する方式 としては、 電力供給側で電力配分制御を行う ため、少なくともどちらかに DC/DC コンバー タを接続する必要がある。また、並列接続し た エネルギー源と蓄電素子を纏めて DC/DC コンバータを介して接続する場合も含め DC/DC コンバータを接続する方式は全部で4 通りが考えられる。これらのうち、エネルギ 一源に燃料電池を接続し、蓄電装置として電 気二重層コンデンサ(EDLC)を用いる場合、こ れらはいずれも電圧変動範囲が広い。そのた め,図2に示すようなDC/DC コンバータを介 して蓄電装置を接続する方法を適用するこ とで,両者とも積極的な出力制御を行うこと が,低損失化や回生エネルギーの有効利用の 観点好ましい。

図 2 DC/DC チョッパを 2 個用いた燃料電池 - EDLC ハイブリッドシステム

②制御性

エネルギーマネージメントの方式として は、EDLCのエネルギーと車両の運動エネルギ ーの総和を一定に保つよう EDLCの充放電制 御を行い、走行に伴う損失は燃料電池から供 給する方式を考案した。

また,燃料電池とEDLCの出力と静電容量に ついては,この制御方式を前提として,回生 電力量からEDLC容量を,2つの駅間で供給 すべき損失エネルギーから燃料電池出力を 決定する方法を提案した。表1の車両諸元と 図3の走行パターン(負荷特性に相当する) を前提に,提案方式を適用した結果,燃料電 池出力は80kW,EDLC容量は53Fとすればよ いことがわかった。

以上で検討した燃料電池・EDLC ハイブリッド鉄道車両駆動システムについて,シミュレ

表1 車両諸元.

Mass of the vehicle M_v	45.0 [t]
(including pay laod)	
Number of vehicle in a train	1[car]
Acceleration at start up α	2.0 [km/h/s]
Maximum deceleration β	-2.0 [km/h/s]
Number of the traction motors	2 [motors/car]
Maximum speed V	110 [km/h]

図3 走行パターン

ーションにより,エネルギーマネージメント が適切に行われているかを評価した。その結 果,図4に示すように,EDLC電圧指令値*V*_{cRef} にEDLC電圧*V*_cがほぼ追従しており,特に駅 停車時には初期充電値の600Vに戻っており, 駅から駅までを一つの充放電サイクルとす るエネルギーマネジメントが達成されてい ることがわかる。また,図2の車両主回路を 模擬した1kW実験システムを構成し,エネル ギーマネジメントの基礎となるパワーフロ 一制御の実験を行った結果,適切に電力を制 御できることが確認できた。

(2) 不均等3 レベル回路方式の効果の明確化 前述の DC/DC チョッパを各電源(エネルギ ー源と蓄電素子)に接続した場合,パワーフ ロー制御の面では自由度が高い。しかし, DC/DC コンバータ自体や付随するリアクトル 装置の質量や体積が大きくなる課題がある。 また,各電源から電動機負荷までの損失も, 変換装置が1台の場合と比べると当然増加 する。このような課題に対し、図1に示した ような、3レベルインバータの直流入力にそ れぞれエネルギー源と蓄電素子を接続する 方式を提案する。このような方式とすること で, DC/DC コンバータやリアクト等が省略で き,インバータ出力電圧をエネルギー源や蓄 電素子単体のみを接続した場合よりインバ ータ出力電圧の高圧化が可能である。

表2の車両諸元にて、0 km/h から 100 km/h ま で加速した際の消費エネルギーおよびイン 表3より、従来の2レベルインバータ搭載車 両は、回生動作によって、力行で消費したエ バータの平均出力を計算したものである。

Items	Values
Train mass per a motor $M_{\rm t}$ [t]	35.0
Rating of induction Motor	95kW-1100V-68A
Traction gear ratio G	7.07
Efficiency of traction gear η_{g}	0.98
Inverter efficiency 77 i	0.97
Wheel radius <i>r</i> _w [m]	0.43
Acceleration a [km/h/s]	2.5
Deceleration b [km/h/s]	2.5

表 2 想定車両諸元

表3 2 レベルインバータと不均等 3 レベルインバータの性能比較

	two level inverter	propose d three level inverter
Consumed energy	21925	19815
$Ene_1[kJ]$		
Regenerative energy	6931	8408
$Ene_2[kJ]$		
Inverter average	205	253
power (Powering) P _{ave1}		
[kW]		
Inverter average	173	210
power		
(Regene.) $P_{\text{ave2}}[\text{kW}]$		
Running duration	147	118
[sec]		

2レベルインバータでは、力行エネルギーの 約32%を吸収できたのに対し、不均等3レベ ルインバータ搭載車両は、回生動作によって、 力行で消費したエネルギーの約42%を吸収で きた。従来の2レベルインバータ搭載車両に 比べて、不均等3レベルインバータ搭載車両 の方が、力行で消費したエネルギーが小さい のは、不均等3レベルインバータ搭載車両の 方が、高速域での出力性能が向上し、力行を 行った時間が短かったことに原因がある。

また、制動時の減速度は一定としたため、 従来の2レベルインバータ搭載車両と不均等 3レベルインバータ搭載車両で、回生動作を 行った時間は等しい。しかし、不均等3レベ ルインバータ搭載車両の方が回生動作時の インバータ電力が大きいために、回生動作で 吸収したエネルギーに差が生じている。 平均電力に関しては、不均等3レベルインバ

ータ搭載車両は、従来の2レベルインバータ 搭載車両よりも、力行時は23%程度、回生時 は21%程度、インバータの平均電力が大きか った。そのため、不均等3レベルインバータ を車両に搭載した場合、加速性能の向上、回 生電力の吸収量増大が期待される。

(3) 不均等 3 レベル回路方式の制御法の確立 ①PWM 制御法

不均等3レベルインバータの動作モードとして、3種類の非同期2レベル動作と非同期3レベル動作、同期1パルス動作が検討されている⁽⁶⁾⁽⁷⁾。

非同期 2 レベル動作には, S_{UX} と S_{DX} を動作 させることで 0 と $E_{f}+E_{c}$ の電位を出力するモ ード, S_{MIX} と S_{DX} を動作させることで 0 と E_{f} の電位を出力するモード, S_{UX} と S_{M2X} を動作 させることで 0 と E_{c} の電位を出力するモード がある。これらの動作は一般的な 2 レベルイ ンバータと同様, 三角波と変調波の比較によ って PWM パルスを生成する。

非同期 3 レベル動作は, Sux, Sm1x, Sm2x, S_{DX}の三段のスイッチを全て動作させるこ とで、相電圧出力として、0、 $E_{\rm f}$ 、 $E_{\rm f}+E_{\rm c}$ の3 つの電位を出力する。このときのスイッチン グパターンを図6に示す。非同期3レベル動 作において、スイッチのスイッチング動作は 二つの搬送波 Car1, Car2 と変調波 v_{*}*を比較 することにより行う。一般的な3レベルイン バータと異なり、本回路は直流側の二 こつの入 力電圧は等しくならない。そこで,二つの三 角波の振幅は、直流電源電圧 E_fと蓄電素子電 圧 E_cの比に応じて変化させる必要がある。こ こで、Car1 の振幅: Car2 の振幅= E_f : E_c であ る。Carl の最大値を 1, Car2 の最小値を-1, こつのキャリアの境界をαと定義すると,(1) 式が成り立つ。

 $E_{c}: E_{f} = 1 - \alpha : 1 + \alpha \dots (1)$ $\alpha < v_{x}^{*}$ かつ Car1< v_{x}^{*} のとき S_{UX} がオンとなり

図7 1パルスモード PWM 制御

 E_{f+E_c} が出力される。 $\alpha > v_x^*$ かつ Car2> v_x^* のと き S_{DX} がオンとなり0が出力される。Car2< v_x^* かつ Car1> v_x^* のとき S_{M1X} がオンとなり E_f が 出力される。

同期1パルス動作は、高速域においてイン バータが出力できる最大電圧を得るために 使用され,出力電圧が最大となる場合には, 出力波形が方形波になることが特徴である。 同期1パルスモードは出力電圧に含まれる高 調波成分が増加するというデメリットはあ るものの、電圧利用率を非同期 PWM よりも 高めることが可能となる。Fig.3 に不均等 3 レベルインバータにおける同期1パルス動作 のスイッチングパターンを示す。スイッチン グは変調波 vx*と同じ周波数を持つ全波整流 波 Car と, v_x *の最大値である V_x *を比較する ことで行う。 V_x *>Car かつ v_x *が正の半周期の とき S_{UX} がオンになり、 $V_{\text{x}}^* < \text{Car}$ かつ v_{x}^* が正 の半周期のとき S_{MX} がオンとなる。 v_x *が負の 半周期のときは S_{DX} がオンとなる。 すなわち, 変調波の半周期のなかで蓄電素子電圧を出

力する幅を,変調波の振幅によって決定する。

②高調波特性

 $E_{f}=50[V], E_{c}=50[V]の際に、変調率 m が 0.6$ で多パルス PWM モード時、および m が 1.0 で1パルスモード時の高調波解析結果の実験 結果と理論計算結果を図8および図9に示 す。グラフの縦軸は高調波成分の振幅を基本 波成分の振幅で除したものである。両者を比 較すると、1パルス動作は、多パルス3レベ ルモードに比べ低次高調波成分の割合が高 いことが確認できる。また、電圧理論解析と 実験結果がほぼ一致することから、導出した 理論式の妥当性が示せた。

③電力配分制御

不均等 3 レベルインバータにおける多パルスの 3 レベル動作は、図6に示すような、変調波と二 つの三角波の比較によってスイッチングを行う が、図10に示すように、v_x*で表される変調波にオ フセットを加え、コモンモードの電圧を変化させ ることで、直流電圧源と蓄電素子から供給される 電力の配分比を変化させることが可能である。こ れを行う際には過変調を避けるため、変調波の振 幅に応じてオフセット値を調節する必要がある。

(a) negative offset

図 10 出力電力配分制御法

(b) positive offset.

オフセット値は以下の式によって制限される。変 調率 mが1に近づくにつれ電力配分比の自由度は 減少し,最終的に m=1 のとき,電力配分比は固定 される。オフセット値は以下の式によって制限さ れる。変調率 mが1に近づくにつれ電力配分比の 自由度は減少し,最終的に m=1 のとき,電力配分 比は(2)式および(3)式の範囲に固定される。

offset $\leq 1 - m$	(offset > 0)(2)
offset $\geq m - 1$	(offset < 0)(3)

以上のような方法について、図 11 および表 4に示すような実験システムを用いて行っ た実験結果を図 12 に示す。この場合, *E*=120[V], *E*=80[V]の配分となっている。こ れらの比は 3:2 であるので, Positive Offset 領域において変調率が 0.4 を超えると、変調 波の振幅の下端が下側三角波の上端に達す るため、電力配分比は減少し始める。同様の 理由から Negative Offset 領域において変調 率が 0.6 を超えると、変調波の振幅の上端が 上側三角波の下端に達するため,EDLC が供 給する電力は増加し始める。m=0.9 付近で二 つの線が交わっているが、これも、Positive Offset 領域で動作させた方が Negative Offset 領域で動作させるよりも、蓄電素子か ら放出されるエネルギーが大きいことが原 因である。

表4 実験システム諸元

Rating of induction Motor	0.75kW-200V-50Hz
Primary resistance R_1 [Ω]	4.00
Secondary resistance R_2 [Ω]	2.15
Primary inductance L_1 [mH]	170
Secondary inductance L_2 [mH]	175
Number of poles <i>p</i>	4
Inertial mass $J[m kgm^2]$	2.98
Dead time [μ s]	3
Carrier frequency <i>f</i> _s [kHz]	5.25
EDLC capacitance $C_{e}[F]$	1.8

図 11 実験システム構成

図12 変調率に対する出力配分実験結果

以上により,提案する電力配分制御法を用 いることで,蓄電素子と直流電源の電力配分 の調節が可能であることと,その出力可能範 囲を実験によって確認できた。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計3件)

- 瀧澤建治,近藤圭一郎,燃料電池・EDLC ハイブリッド鉄道車両の電源容量決定法、 電気学会論文誌 D,(査読あり), Vol. 132-D, No. 2, pp.133-139, (2012.2)
- Hiroyuki Shibuya, <u>Keiichiro Kondo</u>, Designing methods of Capacitance and Control System for a Diesel Engine and EDLCs Hybrid Powered Railway Traction System, Transaction on Industrial Electronics, IEEE, (査読あり), Volume: 58, Issue: 9, Publication Year: 2011, Page(s): 4232 - 4240, (2011.9)
- 〔学会発表〕(計7件)
- 嶋田陽,能美雄貴,<u>近藤圭一郎</u>,不均等 入力電圧形3レベルインバータにおける 入力電圧がインバータの出力特性に及ぼ す影響,電気学会半導体電力変換研究会 資料,SPC-13-39,pp.145-150,2013年 1月
- Akira Shimada, <u>Keiichiro Kondo</u>, Power Electronics, Proceedings on International Symposium on Electrical Drives, Automation and Motion (SPEEDAM) (CD-ROM), (査読あり), pp. 649 - 653, June 2012, (イタリア)
- ③ Ide Yoshihiro, Akira Shimada, <u>Keiichiro Kondo</u>, Study on the PWM methods of the unbalanced input voltage three level inverter with the energy storage device, Proceedings of European Conference on Power Electronics and Applications (EPE 2011), (CD-ROM), (査読あり),Page(s):

- 1 9 , Sept. 2011, (イギリス)
- 6. 研究組織
- (1)研究代表者

近藤 圭一郎 (KONDO KEIICHIRO) 千葉大学・大学院工学研究科・准教授 研究者番号:10425890