

科学研究費助成事業(科学研究費補助金)研究成果報告書

平成 25年5月17日現在

機関番号:13401
研究種目:基盤研究(C)
研究期間:2010~2012
課題番号:22560327
研究課題名(和文) 高温・高周波エレクトロニクスの基礎研究
研究課題名(英文) Study on High-Temperature and High-Frequency Electronic Devices
研究代表者
葛原 正明 (KUZUHARA MASAAKI)
福井大学・工学研究科・教授
研究者番号:20377469

研究成果の概要(相文):高温・高周波で安定に動作する電子アバイスの実現をめさして、 AlGaN/GaN 絶縁ゲート HEMT (MISHEMT) を作製した。ゲート絶縁膜として、SiN, Al₂O₃, HfO₂, ZrO₂ とそれらの複合膜を広く検討した。試作した ZrO₂/Al₂O₃ 複合絶縁膜をもつ MISHEMT は室 温で低いゲートリーク電流(1x10⁻¹⁰A/mm)を示した。この値は従来の HEMT に比べて約3桁 低い値であった。ZrO₂/Al₂O₃ 複合絶縁膜 MISHEMT は、デバイス動作温度が室温から 300℃ま で上昇しても、ゲートリーク電流の増加が最も小さいことが分かった。また、ZrO₂/Al₂O₃ 複合 絶縁膜 MISHEMT は優れた直流特性と安定した界面特性を示した。これらの結果から、今回開 発した ZrO₂/Al₂O₃ 複合絶縁膜 MISHEMT が高温・高周波エレクトロニクス応用として相応しい ことが明らかとなった。

研究成果の概要(英文): AlGaN/GaN MISHEMTs with various dielectric materials, such as SiN, Al₂O₃, HfO₂, and ZrO₂, have been fabricated for stable high temperature operation. The ZrO₂/Al₂O₃ dual dielectric film MISHEMT exhibited a gate leakage current of 1×10^{-10} A/mm at room temperature, which was about 3 orders of magnitude lower than that for the Schottky-gated AlGaN/GaN HEMT. The amount of increse in the gate leakage current from RT to 300 °C for the ZrO₂/Al₂O₃ dual dielectric film MISHEMT was the lowest among devices fabricated in this work. These results indicate that the proposed ZrO₂/Al₂O₃ dual dielectric film MISHEMT is promising for reducing the gate leakage current at high temperatures.

交付決定額

			(金額単位:円)	
	直接経費	間接経費	合 計	
2010年度	1, 800, 000	540, 000	2, 340, 000	
2011年度	1, 000, 000	300, 000	1, 300, 000	
2012年度	600, 000	180, 000	780, 000	
年度				
年度				
総計	3, 400, 000	1, 020, 000	4, 420, 000	

研究分野:工学 科研費の分科・細目:電子デバイス・電子機器 キーワード:電子デバイス・集積回路

1.研究開始当初の背景 窒化ガリウム(GaN)を代表とするⅢ族窒 化物半導体を用いた電子デバイスが、無線通 信およびパワーエレクトロニクス分野のキ ーデバイスとして研究開発が活発化してい る。次世代自動車などの分野では、センサ部 に近接した高温部で動作する高周波増幅器 などの電子デバイスが求められている。

2. 研究の目的

高温環境下(200℃以上)において、マイ クロ波周波数で動作する無線通信用半導体 デバイス実現のための基礎研究を行う。MIS 構造を基本とする窒化物半導体 HEMT を試 作し、高温での温度特性評価を通して、電子 伝導特性の高温における基礎特性を明らか にする。

3. 研究の方法

窒化物半導体への絶縁膜形成技術の開発、 MIS ダイオードの作製と高温での電気特性評価、窒化物半導体 MIS ゲート HEMT の試作 と高温におけるデバイス特性評価を行う。以 上を通して、高温かつ高周波で動作する窒化 物半導体 MIS ゲート HEMT の基礎技術を構 築する。

4. 研究成果

本研究で用いた MIS ゲート AlGaN/GaN HEMT の試作プロセスは以下の通りである。 まず、反応性イオンエッチング (BCl3+Cl2 混合ガス)を用いて素子間分離を行う。次に、 ソース及びドレイン領域のオーミック電極 として、Ti/Al/Mo/Au (15/60/35/50 nm)を蒸着 し、短時間熱処理装置を用いて、窒素雰囲気 中で 850 ℃、30 秒熱処理を行う。BHF 溶液で AlGaN 表面を洗浄後、ゲート絶縁膜の成膜を 行う。成膜した絶縁膜は、表面保護膜の役割 も果たしている。ゲート金属として Ni/Au (100/150 nm)を蒸着後、300 ℃ で 10 分間のポ スト熱処理を行う。オーミック電極部分に形 成された絶縁膜をエッチング除去すること により MIS ゲート HEMT が完成する。デバ イス寸法は、ソースゲート間隔 Lsg=2 µm、ゲ ート長 Lg=2 µm、ゲートドレイン間隔 Lgd=5 μm、ゲート幅 Wg=100 μm とした。絶縁膜に は原子層堆積(ALD)法で形成した Al₂O₃、 ZrO₂、HfO₂を用いた。同時に、これら絶縁膜 を組み合せた複合絶縁膜構造 Al₂O₃/ZrO₂、 Al₂O₃/HfO₂, HfO₂/Al₂O₃, HfO₂/ZrO₂, ZrO₂/HfO₂, ZrO₂/Al₂O₃についても検討した。膜厚は単層 膜 4nm、複合膜では 2nm/2nm とした。 試作し た HEMT の断面構造を図1に示す。

図1 試作した MIS-HEMT の断面構造

図2に単層膜 MIS ダイオードの C-V 特性 を示す。飽和容量値を用いて比誘電率を求め ると、 ϵ_{Al2O3} =8.3、 ϵ_{ZrO2} =29.8、 ϵ_{HFO2} =22.6 とな った。電圧掃引によるヒステリシスは観測さ れなかった。次に MIS 構造 HEMT の特性に ついて議論する。単層 Al₂O₃ 膜を用いた MIS ゲート HEMT のドレイン I-V 特性において は、室温から 300 °C の環境温度上昇により、 ドレイン電流は室温のドレイン電流値の 50%以上大きく低下した。しきい値電圧は、

 V_{th} =-3.7 V であり、逆バイアス印加 V_{gd} =-100 V でのゲートリーク電流は10⁹ A/mmと良好で あった。順方向リーク電流は、 ZrO_2 や HfO₂ MIS と比べても最も小さく、順方向耐圧も 4.85 V と最も高かった。300 °C においても、 C-V 特性のヒステリシスは観察されず良好で ある。 V_{th} の温度変動は室温から 300°C で1.2 V であった。高温時のゲートリーク電流は V_{gd} =-40 V 付近までは 10⁻⁸ A/mm 程度の増加 に留まるが、 V_{gd} =-40 V 以上の高電圧におい てリーク電流が急激に上昇した。また絶縁膜 の破壊も生じた。

単層 ZrO₂ 膜を用いた MIS HEMT の直流特 性には顕著なヒステリシスは見られないも のの、逆方向バイアスがストレスとなりドレ イン電流の低下現象(コラプス)が生じた。リ ーク電流については、十分に抑制されており、 高電圧側でも 10^{10} A/mm と低く Al_2O_3 膜 MIS ゲート HEMT より良好である。また、 順方向耐圧は 3.2 V であった。高温 300 °C で は、室温時に見られた電流コラプスが観測さ れなくなる。ゲートリーク電流は、温度上昇 に伴い 2 桁増加するが、HfO₂ とほぼ同等の電 流値となった。

室温および 300 ℃ における単層 HfO_2 膜 MIS ゲート HEMT の直流特性では、 ZrO_2 膜 MIS HEMT と類似した特性が確認された。順 方向耐圧は、3.55 V であった。温度上昇によ る V_h の変動は $0.9 V \ge 3$ 種類の絶縁膜の中で 最も小さく、ショットキーゲート HEMT の V_h 変動である~0.6 V に近い。

以上の結果をまとめると、単層絶縁膜構造

では、逆方向リーク電流の観点から ZrO₂ や HfO₂が、特に高温動作において効果的である ことが分かった。しかし、V_{th}のヒステリシス や電流コラプスが生じるため、現状では絶縁 膜-半導体間の界面特性が良好であるとは言 い難い。一方、Al₂O₃ 膜では、逆方向リーク 電流が高温で増加するものの、ヒステリシス は少なく、順方向リークが小さいという利点 も有することが明らかとなった。

次に、複合絶縁膜構造 MIS ゲート HEMT の室温および 300 ℃ における直流特性につ いて議論する。AlGaN と接する界面側に、 ZrO2や HfO2を用いると単層構造で見られた 電流コラプスが室温において顕著に認めら れた。一方、Al₂O₃を AlGaN 界面側に用いた 2 層絶縁膜構造には、顕著なコラプスが起こ らなかった。これより、単層構造でヒステリ シスや電流コラプスの観測されない絶縁膜 を AlGaN 界面側に用いることが有効である ことが分かった。また、界面側・表面側を問 わず Al₂O₃を用いたデバイスのドレイン電流 が大きい傾向にあった。これは、Al₂O₃を用 いることでシートキャリア濃度が増加した ことによるものと考えられる。300 ℃ では、 すべての複合絶縁膜構造デバイスにおいて、 ドレイン電流、相互コンダクタンスの熱的低 下とV_{th}の温度変動が見られるものの、V_{th} ヒ ステリシスは観測されなくなった。Vthの変動 も実際には 0.7 V から 1.2 V の間に収まり、2 層絶縁膜構造にしたことによる悪影響は少 ないものと考えられる。

次に、複合絶縁膜構造 MIS ゲート HEMT の室温及び 300 °C における 2 端子電流リーク 特性について述べる。いずれのデバイスも、 室温における V_{gd} =-100 V でのリーク電流は 10^{-10} A/mm 程度であり、絶縁膜種による有意 差はない。 300 °C において、Al₂O₃を用いた デバイスでは、高電界側で波形が乱れ、破壊 する例が見られたが、Al₂O₃ 単層構造と比べ るとリーク電流に強い ZrO₂やHfO₂との組合 せにより破壊するデバイス数は僅かであっ た。一方、HfO₂/ZrO₂と ZrO₂/HfO₂の両デバ イスにおいては、安定したリーク特性が得ら れた。

今回試作した複合絶縁膜構造 MIS ゲート HEMT の中で、300℃でのゲートリーク電流 が最も小さかったのは、ZrO₂/Al₂O₃ 複合膜で あった。図3に室温におけるドレイン I-V 特 性を示す。最大ドレイン電流は 480 mA/mm であり、しきい値電圧は-3.3 V であった。図 4に複合絶縁膜 ZrO₂/Al₂O₃を用いた MIS ゲー ト HEMT の2端子ゲートリーク電流を示す。 Vgd=-100 V にて測定したリーク電流は、ショ ットキーゲートをもつ標準 HEMT に比べて 約3桁小さいことが分かった。今回の実験に おいて得られた主な直流特性と界面特性を まとめて表1に示す。表には、複合絶縁膜構

造に加えて、単層 Al_2O_3 構造、単層 ZrO_2 構造、 標準 HEMT についても記載した。 ZrO_2/Al_2O_3 複合膜構造と単層 Al_2O_3 構造において、他の 構造に比較して高いドレイン電流が得られ た。一方、最大相互コンダクタンスについて は、構造間で有意な差は認められなかった。 複合膜構造と単層 ZrO_2 構造では、 10^{10} A/mm 程度の低いゲートリーク特性が得られた。サ ブスレショルド特性においても、複合膜構造 と単層 ZrO_2 構造において最良値 71 mV/dec が得られた。一方、C-V 特性から求めた界面 準位密度については、単層 Al_2O_3 構造が最良 であり、複合膜構造と単層 ZrO_2 構造を比較す ると、界面に Al_2O_3 をもつ前者の方が優れて いることが分かった。

表1 主な直流特性と界面特性のまとめ

structure	Id_max (mA/mm)	Gm_max (mS/mm)	Vth (V)	BVds (V)	Ig_leak (A/mm)	SS (mV/dec)	Dit (cm ⁻²)
ZrO ₂ /Al ₂ O ₃ (2nm/2nm)	480	94	-3.3	275	9x10-11	71	2x1012
Al_2O_3 (4nm)	489	96	-3.7	330	2x10-9	78	9x10 ¹¹
ZrO ₂ (4nm)	425	93	-2.9	275	1x10 ⁻¹⁰	71	4x10 ¹²
HEMT	340	98	-2.6	275	2x10 ⁻⁷	92	

図5に、ZrO₂/Al₂O₃ 複合膜構造 HEMT と標 準 HEMT について2端子ゲートリーク電流 の温度依存性を示す。ZrO₂/Al₂O₃ 複合膜構造 のリーク電流は、300 ℃ においても 4x10⁻¹⁰ A/mm 以下に抑えられ、この値は標準 HEMT の室温におけるリーク電流より小さかった。

図5 2 端子ゲートリーク電流の温度依存 性(複合絶縁膜構造と標準 HEMT の比較)

室温と 300℃におけるゲートリーク電流特性 を ZrO₂/Al₂O₃ 複合絶縁膜構造、単層 Al₂O₃構 造、単層 ZrO₂構造、標準 HEMT の4種類に ついて比較表示した図を図6に示す。複合絶 縁膜構造の優位性が明確に示されている。

図6 ゲートリーク電流特性の構造間比較

以上の検討より、ZrO₂/Al₂O₃ 複合絶縁膜 MISHEMT が高温・高周波エレクトロニクス 応用デバイスとして相応しいことが明らか となった。

5. 主な発表論文等 (研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計4件)

[1] M. Hatano, N. Yafune, H. Tokuda, Y. Yamamoto, S. Hashimoto, K. Akita, and <u>M. Kuzuhara</u>, "Superior DC and RF Performance of

AlGaN-Channel HEMT at High Temperatures, IEICE Trans. Electron., Vol.E95-C, pp.1332-1336, (2012).

[2] H. Tokuda, J. Yamazaki, and <u>M. Kuzuhara</u>, "High temperature electron transport properties in AlGaN/GaN heterostructures," J. Appl. Phys., 108, 104509 (2010).

[3] H. Tokuda, M. Hatano, N. Yafune, S. Hashimoto, K. Akita, Y. Yamamoto, and <u>M. Kuzuhara</u>, "High Al composition AlGaN-channel high-electron-mobility transistor on AlN substrate," Appl. Phys. Express, 3, 121003 (2010).

[4] H. Tokuda, J. Yamazaki, and <u>M. Kuzuhara</u>, "High temperature electron transport properties in AlGaN/GaN heterostructures," J. Appl. Phys., 108, 104509 (2010).

〔学会発表〕(計12件)

[1] M. Hatano, Y. Taniguchi, H. Tokuda, and <u>M. Kuzuhara</u>, "Influence of annealing on DC performance for AlGaN/GaN MIS HEMTs," 2012 International Workshop on Nitride Semiconductors, Sapporo, p.485, (2012).

[2] 畑野舞子,谷口裕哉,徳田博邦<u>, 葛原正明</u>, 「AlGaN/GaN MIS HEMT の高温特性」,第73 回応用物理学会学術講演会, 12p-F2-2, 2012

[3] 畑野舞子,谷口裕哉,徳田博邦,<u>葛原正</u> <u>明</u>,「AlGaN/GaN MIS HEMT の直流特性に与 える熱処理の影響」,信学技報, Vol.112 No.154, pp.1-4, 2012

[4] <u>M. Kuzuhar</u>a and H. Tokuda, "AlGaN/GaN Heterojunction FETs for High-Breakdown and Low-Leakage Operation," Pacific Rim Meeting on Electrochemical and Solid-State Science (PRiME 2012), Honolulu, Hawaii, Dig., E4, 2532 (2012).

[5] <u>M. Kuzuhara</u>, "GaN-based electronics," The Ninth Int'l Conf. on Advanced Semiconductor Devices and Microsystems (ASDAM 2012), Smolenice, Slovakia, Proc., pp.1-6, (2012).

[6] <u>M. Kuzuhara</u> and H. Tokuda, "Status and Perspective of GaN-based Technology in Japan," CS MANTECH, Boston, USA, Dig., pp.39-42, (2012).

[7] M. Hatano, J. Yamazaki, N. Yafune, S. Hashimoto, K. Akita, Y. Yamamoto, and <u>M. Kuzuhara</u>, "High-Temperature RF Characterization of AlGaN-Channel HEMTs," 9th Topical Workshop on Heterostructure Microelectronics (TWHM 2011), Gifu, Dig., pp.13-14 (2011).

[8] J. Yamazaki, M. Hatano, H. Tokuda and <u>M. Kuzuhara</u>, "High-temperature RF characterization of AlGaN/GaN HEMTs," 38th International Symposium on Comp. Semicond.,

Berlin, Dig., pp.355-356 (2011). [9] M. Kuzuhara, "Next Challenges in III-Nitride HEMTs (invited)," Workshop on Frontier Photonic and Electronic Materials and Devices, Granada, Dig., p.22, (2011). [10] M. Hatano, N. Kunishio, H. Chikaoka, J. Yamazaki, Z. B. Makhzani, N. Yafune, K. Sakuno, S. Hashimoto, K. Akita, Y. Yamamoto, and <u>M. Kuzuhara,</u> "Comparative high temperature DC characterization of HEMTs with AlGaN layers," GaN and channel CS-MANTECH, Portland, p.101, (2010). [11] M.Kuzuhara, "Temperature Characterization of GaN and AlGaN-based HEMTs (invited)," International Workshop on Nitride Semiconductors (IWN2010), Tampa, Program & Abstracts, N3.1, p.22, (2010). [12] M. Kuzuhara, "Next challenges in GaN HEMT electronics (invited)," HETECH 2010, Greece, Dig., Session 5, Tue-1 (2010). 〔図書〕(計1件) [1] 大橋弘通・葛原正明, 丸善株式会社, 「パ ワーデバイス」, 2011, 248 頁 〔産業財産権〕 ○出願状況(計1件) 名称:窒化物半導体を用いた電界効果型ト ランジスタ及びその製造方法 発明者:葛原正明、徳田博邦、矢船憲成 権利者:国立大学法人福井大学 種類:特許 番号: 特願 2012-084259 出願年月日:24年4月2日 国内外の別:国内 [その他] ホームページ等 http://fuee.u-fukui.ac.jp/~kuzuhara/ind ex.html 6. 研究組織 (1)研究代表者

葛原 正明 (KUZUHARA MASAAKI)
福井大学・大学院工学研究科・教授
研究者番号:20377469
(2)研究分担者
山本 あき勇 (YAMAMOTO AKIO)
福井大学・大学院工学研究科・教授
研究者番号:90210517