

科学研究費助成事業(科学研究費補助金)研究成果報告書

平成 25 年 3 月 31 日現在

機関番号:17301 研究種目:基盤研究(C) 研究期間:2010~2012 課題番号:22560702 研究課題名(和文)亜鉛—アンチモン系合金の熱電性能の改善 研究課題名(英文) IMPROVEMENT OF THERMOELECTRIC PROPERTIES IN ZN-SB ALLOYS 研究代表者 羽坂 雅之(HASAKA MASAYUKI) 長崎大学・大学院工学研究科・研究員 研究者番号:30039698

研究成果の概要(和文):本研究の目的は、熱電気直接変換による発電のために、合金 Zn_xSb₃(x = 3.4-4.3)の微視的構造と熱電的性質を解明することである。合金の作製は周速度 0.6-4.2m s⁻¹ の片ロール液体急冷法により、微視的構造の解明は、X線回折、透過電子顕微鏡観察、エネル ギー分散型X線分析および自由エネルギー計算によった。液体急冷状態においてβ-Zn₄Sb₃ は、 0.6 m s⁻¹の場合 x < 4 で ZnSb と、x > 4 で Zn と共存し、4.2 m s⁻¹の場合 $x \ge 3.8$ で ζ -Zn₃Sb₂ と 共存した。 ζ -Zn₃Sb₂ はその後のアニールによって消滅した。β-Zn₄Sb₃ においてはナノサイズの ボイドや Zn 粒が Zn 空孔、侵入型 Zn 原子、Zn 原子の反応により析出あるいは消滅した。測定 した無次元性能指数、出力因子、ゼーベック係数、電気伝導度、熱伝導度は合金の作製プロセ スによって微視的構造が変化するため大きく変化した。

研究成果の概要(英文): The aim of the research is to improve micro-structures and thermoelectric properties in Zn_xSb₃ (*x* = 3.4–4.3) alloys for generating power by directly converting heat into electricity. The alloys were fabricated through a single-wheel melt-spinning process at wheel velocities of 0.6–4.2 m s⁻¹. The micro-structures were investigated using X-ray diffraction, transmission electron microscopy, together with energy dispersive X-ray analysis, and by calculating free energy. β –Zn₄Sb₃ in the as-spun state coexisted with ZnSb or Zn at 0.6 m s⁻¹, while it coexisted with ζ –Zn₃Sb₂ in *x* \geq 3.8 at 4.2 m s⁻¹, where ζ –Zn₃Sb₂ disappeared in the annealed ribbons. Nano-scale voids and zinc inclusions precipitated or disappeared through reactions of zinc vacancies, interstitial zinc atoms, and zinc atoms in β –Zn₄Sb₃. The dimensionless figure of merit, power factor, Seebeck coefficient, electrical conductivity and thermal conductivity which were measured depended on the complex micro-structures of β –Zn₄Sb₃ which were peculiar to the fabrication processes.

			(金額単位:円)
	直接経費	間接経費	合 計
2010 年度	1, 500, 000	450,000	1, 950, 000
2011 年度	1,000,000	300, 000	1, 300, 000
2012 年度	500,000	150,000	650,000
年度			
年度			
総計	3,000,000	900, 000	3, 900, 000

交付決定額

研究分野:工学 科研費の分科・細目:材料工学・構造・機能材料 キーワード:金属物性、格子欠陥、電子顕微鏡、電子・電気材料

科学研究費助成事業(科学研究費補助金)研究成果報告書

1. 研究開始当初の背景

循環型社会の構築、環境問題、エネルギー 枯渇問題の解決、エレクトロニクス技術の高 度化が益々重要になってきており、これらに 対応するために高効率、高出力の熱電変換材 料の研究開発が世界的規模で活発化してい る。

熱電変換材料の性能は、無次元性能指数 (ZT)や出力因子(P)によって判断される。

$$ZT = \frac{\alpha^2 \sigma T}{\kappa_e + \kappa_p} , \quad P = \alpha^2 \sigma$$

ここで、 α はゼーベック係数、 σ は電気伝 導度、 κ_e は電子による熱伝導度、 κ_p はフォ ノンによる熱伝導度、Tは絶対温度である。 無次元性能指数 ZTが大きいほど高効率で熱 電変換が可能になり、出力因子 Pが大きいほ ど大きな電力を取り出すことができる。

それゆえ、熱電変換材料の開発目標は、半 導体並みの高いゼーベック係数 α 、金属結晶 の様に大きな電気伝導度 σ 、ガラスの様に小 さな熱伝導度 $\kappa_p \varepsilon$ 、1 つの材料の中で合わせ て達成し、無次元性能指数 ZT と出力因子 P を大きくすることである。

現在、開発が期待される熱電変換材料の一つに β -Zn₄Sb₃がある。その理由は、 β -Zn₄Sb₃ においては、Zn と Sb が結晶格子を組むため 金属結晶の様に大きな電気伝導度が見込ま れ、同時に Zn が侵入型サイトに配置するた めガラスの様に小さな熱伝導度の達成が可 能とされるからである。

したがって、大きな無次元性能指数 ZT と 大きな出力因子 P を実現するために、 β -Zn₄Sb₃の熱電的性質に影響を及ぼす構造的 因子を十分に解明し、適切な製造プロセスを 確立することが望まれる。

2. 研究の目的

本研究の目的は、熱電気直接変換による発 電システムの構築のために必要なβ-Zn₄Sb₃ の微視的構造と熱電的性質、およびこれらの 相関関係を解明し、大きな無次元性能指数ZT と大きな出力因子Pを実現するための製造プ ロセスを確立することである。

3. 研究の方法

金属 Zn、Sb を秤量後、高周波真空溶解して Zn_xSb₃ (x = 3.4-4.3)インゴットを得た。続いてインゴットの一部を周速度 0.6-4.2 m s⁻¹の片ロール液体急冷法によりリボン状に加工

し、673 Kで2hアニールを行った。次に、 X線回折、透過電子顕微鏡観察、エネルギー 分散型X線分析を行い、β-Zn₄Sb₃の微視的構 造解析を行った。また、統計熱力学的に自由 エネルギーを導出し、β-Zn₄Sb₃中のZn空孔 数、侵入型Zn数、Zn数を算出した。さらに、 無次元性能指数、出力因子、ゼーベック係数、 電気伝導度、熱伝導度の測定を行い、熱電的 性質に及ぼす構造的因子について検討した。

4. 研究成果

(1) 冷却状態の構造と熱電的性質

図1に示すように、液体急冷状態において は、0.6 m s⁻¹の場合、 β -Zn₄Sb₃は x < 4.0 なら ば ZnSb と共存し、x > 4.0 ならば Zn と共存 した。また、4.2 m s⁻¹の場合、 β -Zn₄Sb₃は x \geq 3.8 ならば高温から凍結されたζ-Zn₃Sb₂ と 共存した。

図 2、3 に示すように、液体急冷状態においては、 0.6 m s^{-1} の場合、無次元性能指数、 出力因子、電気伝導度はx < 4.0 ならば xの増加と共に増加し、 $x > 4.0 \text{ ならば}^{-1}$ 定になった。 ゼーベック係数と熱伝導度はxの増加に伴い やや減少した。また、 4.2 m s^{-1} の場合、無次 元性能指数、出力因子、電気伝導度は ζ -Zn₃Sb₂ の存在のため 0.6 m s^{-1} の場合と比較して小さ くなった。

図1 液体急冷状態 Zn_xSb_3 (x = 3.6, 3.9, 4.0, 4.2)の粉末 X線回折パターン。ロール周速度 0.6、4.2 m s⁻¹。 \triangle はζ- Zn_3Sb_2 、●はβ- Zn_4Sb_3 、 〇は ZnSb、×は Zn に帰属する回折ピーク。

図 2 液体急冷状態 Zn_xSb₃の無次元性能指数 ZT。ロール周速度 0.6、4.2 m s⁻¹。測定温度 293 K、373 K、473 K。

図3 液体急冷状態 Zn_xSb₃のゼーベック係数、 電気伝導度、出力因子、熱伝導度。ロール周 速度 0.6、4.2 m s⁻¹。測定温度 293 K。

(2) アニール状態の構造と熱電的性質

図4に示すように、アニール状態において は、0.6 m s⁻¹の場合、液体急冷状態と同様に、 β -Zn₄Sb₃はx<4.0 ならばZnSbと共存し、x> 4.0 ならばZnと共存した。4.2 m s⁻¹の場合、 ζ -Zn₃Sb₂が消滅し、 β -Zn₄Sb₃はx<4.0 ならば ZnSbと共存し、x>4.0 ならばZnと共存した。

図 5 に示すように、アニール状態において は、 0.6 m s^{-1} および 4.2 m s^{-1} の場合、 $2n_xSb_3$ (x < 4.0)中の β - Zn_4Sn_3 の体積分率は、てこの法則 に従ってxの増加と共に増加した。

図 6 に示すように、アニール状態において、 4.2 m s⁻¹の場合、格子定数は 0.6 m s⁻¹の場合 よりも小さい。これは 4.2 m s⁻¹の場合、侵入 型 Zn 数が少ないことを示す。

図 7、8 に示すように、アニール状態にお

いて、 0.6 m s^{-1} の場合、液体急冷状態と同様 に、無次元性能指数、出力因子、電気伝導度 はx < 4.0ならばxの増加と共に増加し、x >4.0ならば一定になった。 4.2 m s^{-1} の場合、電 気伝導度と出力因子は 0.6 m s^{-1} の場合よりも 大きくなり、無次元性能指数は熱伝導度が大 きいため小さくなった。

図 4 液体急冷後 673 K×2 h アニールした Zn_xSb_3 の粉末X線回折パターン。ロール周速 度 0.6、4.2 m s⁻¹。

図 5 液体急冷後 673 K×2 h アニールした Zn_xSb₃中の β -Zn₄Sb₃の体積割合。ロール周速 度 0.6、4.2 m s⁻¹。リートベルト解析の結果。

図 6 液体急冷後 673 K×2 h アニールした Zn_xSb_3 中の β - Zn_4Sb_3 の格子定数。ロール周速 度 0.6、4.2 m s⁻¹。

図 7 液体急冷後 673 K×2 h アニールした Zn_xSb_3 の無次元性能指数。測定温度 293 K。 ロール周速度 0.6、3.5、4.2 m s⁻¹。

図 8 液体急冷後 673 K×2 h アニールした Zn_xSb₃のゼーベック係数、電気伝導度、出力 因子、熱伝導度。測定温度 293 K。ロール周 速度 0.6、3.5、4.2 m s⁻¹。

(3) β-Zn₄Sb₃と共存する構造

図 9、10、11、12 にロール周速度 0.6 m s⁻¹ における Zn_xSb₃(x=3.6, 4.2)のアニール状態の 透過電子顕微鏡 (TEM) の明視野像を示す。 図 9 においては β -Zn₄Sb₃ と境界を接する ZnSb、図 10、11、12 においては β -Zn₄Sb₃中 に分散するナノサイズのボイドや Zn 粒が観 察される。 β -Zn₄Sb₃の分析組成を Zn_ySb₃によ り表示すると y < 3.5 であった。この原因はナ ノサイズのボイドや Zn 粒が β -Zn₄Sb₃から析 出したため、 β -Zn₄Sb₃の化学量論組成 4:3 よりも Zn が抜けて少なくなったためである と考えられる。

図 9 液体急冷後 673 K×2 h アニールした Zn_{3.6}Sb₃の明視野像。β-Zn₄Sb₃は ZnSb と共存 している。ロール周速度 0.6 m s⁻¹。

図 10 液体急冷後 673 K×2 h アニールした Zn_{3.6}Sb₃の明視野像。ロール周速度 0.6 m s⁻¹。

図 11 液体急冷後 673 K×2 h アニールした Zn_{4.2}Sb₃の明視野像。ロール周速度 0.6 m s⁻¹。

図 12 液体急冷後 673 K×2 h アニールした $Zn_{4.2}Sb_3$ の明視野像。ロール周速度 0.6 m s^{-1} 。

- (4) Zn 空孔と侵入型 Zn 原子
- 図 13 は自由エネルギー最小の条件に基づ
- いて、組成 Zn_zSb₃₀のβ-Zn₄Sb₃単位胞内の Zn

空孔数(n)、侵入型 Zn 原子数(i)、Zn 原子数 (z=36-n+i)の温度依存性を計算した結 果を示す。図より、昇温、降温を伴う製造法 の相違により、Zn 空孔数、侵入型 Zn 原子数、 Zn 原子数に大きな変化が起こり、その結果、 ナノサイズのボイドや Zn 粒が析出、消滅す ることが推察される。すなわち、Kröger-Vink 表示法を用いて、昇温時のその過程は次のよ うな反応によって起こると考えられる。

 $Zn_i^{\bullet\bullet} \rightarrow V_i^{\times} + Zn + 2h^{\bullet},$

 $Zn + V_{Zn}'' \rightarrow Zn_{Zn}^{\times} + 2e' \quad Zn_i^{\bullet \bullet} + V_{Zn}'' \rightarrow V_i^{\times} + Zn_{Zn}^{\times}$

また、降温時の過程は次のような反応によって起こることが説明される。

 $Zn_{Zn}^{\times} \rightarrow V_{Zn}'' + Zn + 2h^{\bullet}$,

 $Zn + V_i^{\times} \rightarrow Zn_i^{\bullet \bullet} + 2e', \ Zn_{Zn}^{\times} + V_i^{\times} \rightarrow V_{Zn}'' + Zn_i^{\bullet \bullet}$

図 13 組成 Zn_zSb_{30} の β - Zn_4Sb_3 単位胞内の Zn空孔数(n)、侵入型 Zn 原子数(i)、Zn 原子数 (z = 36 - n + i)の温度依存性。

(5) 昇温変化

図 14 にロール周速度 0.6 m s⁻¹ における Zn_xSb₃のアニール状態の無次元性能指数、ゼ ーベック係数、電気伝導度、出力因子、熱伝 導度を示す。無次元性能指数、出力因子は *x* の増加と共に電気伝導度が増加するため増 加する。

図 15 にロール周速度 0.6 m s⁻¹における Zn_xSb₃のアニール状態のゼーベック係数と電 気伝導度の対数の関係いわゆる Jonker plot を 示す。Jonker Plot は直線にはなっていない。 この原因は、 β -Zn₄Sb₃ が ZnSb、Zn、あるい はζ-Zn₃Sb₂などと共存すること、 β -Zn₄Sb₃ が ナノサイズのボイドやZn 粒、あるいはZn 空 孔、侵入型 Zn 原子を含むこと、 β -Zn₄Sb₃の Zn 濃度が4:3 化学量論組成よりも低くなる ことなど β -Zn₄Sb₃の複雑な構造変化に由来す ると考えられる。

(6) 今後の展望

合金 Zn_xSb₃ (x = 3.4-4.3)は潜在的に良好な熱 電的性質をもつ。β-Zn₄Sb₃、ZnSb、Zn、ζ-Zn₃Sb₂、 ボイド、Zn 粒、Zn 空孔、侵入型 Zn 原子、 β -Zn₄Sb₃の Zn 濃度など、構造的因子を製造 過程においてさらに制御すれば、熱電気直接 変換による発電のためにさらに良好な熱電 的性質を得ることが可能になると推察され る。

図 14 液体急冷後 673 K×2 h アニールした Zn_xSb₃の無次元性能指数、ゼーベック係数、 電気伝導度、出力因子、熱伝導度。ロール周 速度 0.6 m s⁻¹。

図 15 液体急冷後 673 K×2 h アニールした Zn_xSb₃のゼーベック係数と電気伝導度の対数 の関係、いわゆる Jonker plot。ロール周速度 0.6 m s^{-1} 。

- 5. 主な発表論文等 (研究代表者、研究分担者には下線) 〔雑誌論文〕(計8件)
- <u>T. Morimura</u>, <u>M.Hasaka</u>, H. Nakashima, Microstructures and Thermoelectric Properties of Melt-Spun Zn_xSb₃ Ribbons, Journal of Electron Materials, (2013), DOI: 10.1007/S11664-013-2481-7 PP.1-5 審査 有
- ② K. Baba, R. Hatada, S. Flege, W. Ensinger, Y. Shibata, J. Nakashima, T. Sawasec, <u>T. Morimura</u>, Preparation and antibacterial properties of Ag-containing diamond-like carbon films prepared by a combination of magnetron sputtering and plasma source ion implantation, Vacuum, 89(2013), 179–184 審査有
- ③ <u>M. Hasaka</u>, <u>T. Morimura</u>, H. Nakashima, Thermoelectric Properties of Melt-Spun Zn_xSb₃ Ribbons, Journal of Electron Materials, 41(2012), 1193-1198 審查有
- ④ <u>T. Morimura, M. Hasaka</u>, S. Kondo, H. Nakashima, H. Maeda, Microstructures and Thermoelectric Properties of Sintered Ca₃Co₄O₉-Based Oxide, Journal of Electron Materials, 41(2012), 1217-1221 審查有
- ⑤ <u>T. Morimura, M. Hasaka</u>, K. Shimoda, H. Nakashima, Microstructures of Annealed TiNiSn-Based Alloy Ribbons, Journal of Electronic Materials 39(2010), 2149-2153 審查有
- ⑥ <u>森村隆夫</u>、行列表示による STEM 像シミュレーション法の開発、長崎大学大学院工学研究科研究報告、42(2012), 16-21 審査無
- ⑦ S. Kondo, <u>M. Hasaka</u>, <u>T. Morimura</u>, On the role of induced impurity potential of β–FeSi₂ Physics Procedia, 11(2011), 142–145 審査 有
- 8 <u>T. Morimura</u>, STEM image simulation byBloch-wave method with layer-by-layer

representation Journal of Electron Microscopy, 59(2010), S23-S28 審查有 [学会発表] (計 5 件)

- ① <u>T. Morimura, M. Hasaka</u>, H. Nakashima, Microstructures and Thermoelectric Properties of Melt-Spun Zn_xSb_3 Ribbons, The 31st International & 10th European Conference on Thermoelectrics, 2012 年 7 月 9 日~12 日, Aalborg, Denmark
- 山口隆大、<u>森村隆夫</u>、佐藤幸生、幾原雄 一、<u>羽坂雅之</u>、ミスフィット型層状酸化 物の STEM 観察と熱電的性質、日本顕微 鏡学会、第 68 回学術講演会、2012 年 5 月 14 日~5 月 16 日つくば国際会議場(つ くば)
- ③ <u>M. Hasaka</u>, <u>T. Morimura</u>, H. Nakashima, Thermoelectric properties of melt-spun Zn_xSb₃ ribbons, 30th International Conference on Thermoelectrics, 2011 年 7 月 18 日, Traverse City, Michigan, USA
- ④ <u>T. Morimura, M. Hasaka</u>, S. Kondo, H. Nakashima, Microstructures and thermoelectric properties of sintered Ca₃Co₄O₉-based oxide, 30th International Conference on Thermoelectrics, 2011 年 7 月 18 日, Traverse City, Michigan, USA
- ⑤ 森村隆夫、羽坂雅之、Bloch波法による STEM像シミュレーションの欠陥構造への応用、日本顕微鏡学会第66回学術講演会2010年5月24日、名古屋国際会議場(名古屋)
- 6. 研究組織
- (1)研究代表者
- 羽坂 雅之(HASAKA MASAYUKI)長崎大学・大学院工学研究科・研究員研究者番号: 30039698

(2)研究分担者
森村 隆夫(MORIMURA TAKAO)
長崎大学・大学院工学研究科・助教
研究者番号: 30230147