交付決定額

科学研究費助成事業(科学研究費補助金)研究成果報告書

平成 25 年 5 月 29 日現在

機関番号:14301	
研究種目:基盤研究(C)	
研究期間:2010~2012	
課題番号:22560720	
研究課題名(和文)フェムト秒レーザー加工による非晶質金属薄膜ナノ周期構造形成	
研究課題名 (英文) Amorphous structures on metal thin film with a surface of peri self-organized nanostructures induced by femtosecond laser processing 研究代表者 橋田 昌樹 (HASHIDA MASAKI) 京都大学・化学研究所・准教授 研究者番号: 50291034	odio

研究成果の概要(和文):金属表面にできるナノ周期構造と結晶の関係を明らかにするため 高空間分解能の電子顕微鏡により結晶構造を観察した。レーザー照射条件 F= 0.08-0.64J/cm²において形成されるナノ構造は、F>0.35J/cm²及び F<0.2J/cm²では多結晶 となり、0.23J/cm²では著しい結晶性の消失(非晶質化)がみられた。結晶性が消失する機 構としてレーザー照射時に放出される高エネルギーイオンが寄与している可能性が高いこ とをシミュレーションにより明らかにした。

研究成果の概要(英文): The precise measurement for crystal degree was performed on cupper thin film with transmission electron microscope. We have analyzed the electron diffraction patterns in the laser fluence of $0.08 \cdot 0.64$ J/cm² where the grating structure is formed on thin films. It is found that the crystal structures are transformed depending on laser fluence; polycrystalline structures at < 0.2 J/cm², amorphous at ~ 0.23 J/cm², and polycrystalline structures again at > 0.35 J/cm². The mechanism of crystal structure transformation by femtosecond laser pulses is conceptually proposed, that is induced by the injection of energetic ions generated in the process of self-formation of periodic structures.

			(金額単位:円)
	直接経費	間接経費	合 計
2010年度	1, 300, 000	390,000	1,690,000
2011年度	1, 500, 000	450,000	1, 950, 000
2012年度	500,000	150,000	650,000
年度			
年度			
総計	3, 300, 000	990, 000	4, 290, 000

研究分野:工学 科研費の分科・細目:材料工学、材料加工・処理 キーワード:結晶・組成制御、ナノ周期構造

1.研究開始当初の背景 機能性薄膜材料の設計製作では、材料の「構 造、結晶、組成」が重要な役割を果たしてい ることが知られている。しかし、金属薄膜上 に人工的に微細な「構造」を形成し、その「結 晶」を制御するには、実用的な薄膜として使用するうえで、大気・低温下でのプロセス技術が極めて重要である。我々は、固体物質の熱緩和時間(10⁻¹²秒以上)よりも短いパルス幅をもつフェムト秒レーザー(<10⁻¹³秒以下)

を使い、大気・室温下でレーザー波長よりも 遥かに短いピッチのナノ周期構造を固体表面 に形成することに成功している。一方、結晶 構造については他の研究者により調べられ室 温下においてフェムト秒レーザー照射された 金属(Au, Ag, Cu, Fe)の表層部が部分的に非晶 質になる観測結果が近年報告されている。こ の非晶質構造が観測された元素を周期表に示 してみると、従来法(スパッタリング法、真 空蒸着法、遠心急冷法、ロール急冷法、電気 メッキ法、高エネルギー粒子線照射法)では 作成例のなかった元素の非晶質化ができてい る。非晶質に変化したナノ周期構造を薄膜上 に作ることができれば、材料の「かたち」に より決まる電気・熱伝導性、磁性、光物性に 加え非晶質金属特有の性質を兼ね備えた新し い機能性金属薄膜材料が形成できる。しかし、 ナノ周期構造と非晶質構造の形成条件は、実 験条件(材料の厚さ、基板材料種、レーザー 照射条件)が異なっていることから上記の研 究報告の対比から2つを同時に満足する形成 条件を推察することは難しい。このため実用 上重要な薄膜の状態において非晶質ナノ周期 構造の作成には成功していない。

2. 研究の目的

本研究では、フェムト秒レーザー加工により 金属表面に微細な「構造」を形成すると同時 にその「結晶」を制御し、新しい機能性金属 薄膜作成の基盤を確立することを目的として いる。特に、新しい結晶(非晶質)を付与し たナノ周期構造形成を目指し、従来法におい て非晶質化が形成されなかった銅といった実 用上最も重要な金属に対して、金属膜厚、基 板材料種、レーザー照射条件関する基礎デー タからレーザー誘起ナノ周期構造とその結晶 明を試み非晶質金属薄膜作成の基盤を築く。

3. 研究の方法

(1)フェムト秒レーザー加工による金属薄膜 のナノ周期構造形成

ナノ周期構造付与金属を薄膜の状態で分離す るため、NaCl 等の固体基板上に銅を蒸着し単 結晶化を試みた。単結晶化するための最適基 板温度を調べた。作成した単結晶銅薄膜にレ ーザーを照射しナノ周期構造形成のためのレ ーザー照射条件を整理した。

(2)ナノ周期構造金属薄膜の結晶評価

レーザー照射した金属薄膜について、結晶性 (TEM 観察)を調べナノ周期構造と結晶性の 関係を整理した。特に、結晶構造変化(多結 晶、非晶質)に関する基礎データを収集し、 ①ナノ周期構造形成②非晶質形成③非晶質ナ ノ周期構造形成しているレーザー照射条件を 調べた。 (3)フェムト秒レーザー加工により薄膜表面 から放出する粒子のエネルギー測定

・ 飛行時間質量分析法により、蒸発物の成分 やエネルギー分布を測定した。

 ・ 蒸発物のイオンに着目し、レーザー照射条件とそのエネルギー分布の関係からレーザー 照射金属表面のイオン温度、イオン密度や仕事関数などの基礎物理定数を評価し、単結晶から非晶質へ変化する機構を考察した。

(4)フェムト秒レーザー加工により薄膜表面 から放出する粒子の空間分布測定

 放出イオンの指向性を調べるため、空間分布を測定するためイオンレンズを導入した空間イメージングを行った。空間イメージングに必要な蛍光板付きMCP、デジタルCCDカメラ、定電圧源を飛行時間質量分析法に組み込んだ。 イオン放出空間分布とレーザー照射条件(偏光)の関係からイオン放出に寄与するレーザーパラメータを考察した。

(5)金属薄膜の非晶質化の形成機構解明と基 盤構築

・ナノ周期構造形成機構を提案するとともに 非晶質化プロセスとの関連を明確にした。こ れにより金属薄膜上に人工的に微細な「かた ち」を形成し、その「構造」を制御するレー ザープロセシングの基盤を構築した。

4. 研究成果

(1)フェムト秒レーザー加工による金属薄膜 のナノ周期構造形成

結晶銅薄膜は温度調整(350℃)された NaCl 基板に銅原子を300nm 蒸着することにより作 成した。基板上に作成された銅薄膜にレーザ ー(160fs,800nm)を集光照射し、表面の極表 層部をアブレーションさせナノ周期構造を 形成すると共に、膜厚が20 nm 程度になるよ うに照射回数を制御した。銅薄膜ではナノ周 期構造が形成されるレーザーフルーエンス 範囲は 0.08-0.64 J/cm² であることを明ら かにした。

(2)ナノ周期構造金属薄膜の結晶評価

薄膜 Cu 単結晶の照射前後の回折像を比較 し、 $F > 0.35 J/cm^2$ 及び $F < 0.2 J/cm^2$ の レーザー照射では多結晶となり、0.23 J/cm^2 では著しい結晶性の消失(非晶質)を 示すことが明らかになった。これにより① ナノ周期構造形成②非晶質形成③非晶質ナ ノ周期構造形成しているレーザー照射条件 が明らかになった。

(3)フェムト秒レーザー加工により薄膜表面 から放出する粒子のエネルギー測定

ナノ周期構造が形成されるレーザーフルー エンスにおいて金属表面から飛散するイオ ンのエネルギーを飛行時間質量分析法によ り測定した。非晶質化の著しいレーザーフル ーエンス F=0.23 J/cm²において、金属表面 から 30eV のイオンが放出されていること が分った。放出イオンエネルギーはレーザ ーのフルーエンスの 1.2 乗に比例して増加 していた。

(4)フェムト秒レーザー加工により薄膜表面 から放出する粒子の空間分布測定

レーザーアブレーションにより飛散する銅 イオンは固体表面に対して垂直方向が最も 多く、放出分布は cos⁶0 であった。次に放 出イオン量のレーザー偏光方向依存性を調 べた。イオン放出量は p 偏光において最大 を示したが s 偏光では観測されなかった。 このことからレーザーアブレーションによ り放出される金属イオンは固体表面に垂直 に印加される光電場が寄与していることが 明らかになった。

(5)金属薄膜の非晶質化の形成機構解明と基 盤構築

フェムト秒レーザーを適切なフルーエンス で金属に照射すると、表面に波長以下の格 子間隔をもつナノ周期構造が自己形成され、 その格子間隔は、レーザーフルーエンスに 依存していた。ナノ構造の形成機構解明で は表面プラズマ波へのパラメトリック崩壊 を提案し、このモデルが、種々の金属(Cu, Ti, Pt, Mo, W)に適用できること明らかにし た。

ナノ周期構造形成時に、固体表面から 30eV の高エネルギーイオンが放出されているこ とを明らかにし、このイオンが結晶性消失 に寄与している可能性が高いことをモンテ カルロシミュレーションにより明らかにし た。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計4件)

- (1) Y. Miyasaka, <u>M. Hashida</u>, Y. Ikuta, K. Otani, <u>S. Tokita</u>, and S. Sakabe:" Nonthermal emission of energetic ions from a metal surface irradiated by extremely low fluence femtosecond laser pulses ", Physical Review B Vol. 86, pp. 075431-1-075431-5 (2012)杳 読 有 http://prb.aps.org/pdf/PRB/v86/i7/e07 5431
- (2) <u>M. Hashida</u>, Y. Miyasaka, Y. Ikuta, K. Otani, <u>S. Tokita</u>, and <u>S.</u> <u>Sakabe</u>: "Periodic nano-grating structures produced by femtosecond laser pulses for metals with low- and high-melting points", Journal of Laser Micro/Nanoengineering Vol. 7, No. 2, pp. 194-197 (2012) 査読有.
 - http://www.jlps.gr.jp/jlmn/upload/537 2fba805aa9aaa30daf185bed3d222.pdf

- (3) <u>M. Hashida</u>, Y. Miyasaka, Y. Ikuta, <u>S.</u> <u>Tokita</u>, and <u>S. Sakabe</u>: "Crystal structures on a copper thin film with a surface of periodic self-organized nanostructures induced by femtosecond laser pulses", Physical Review B Vol. 83, pp. 235413-1-235413-5(2011) 査 読 有 . http://prb.aps.org/pdf/PRB/v83/i23/e2 35413
- (4) K. Okamuro, <u>M. Hashida</u>, Y. Miyasaka, Y. Ikuta, <u>S. Tokita</u>, and <u>S. Sakabe</u>:" Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation", Physical Review B Vol. 82, pp. 165417-1-165417-5 (2010) 査読有. http://prb.aps.org/pdf/PRB/v82/i16/e1 65417

〔学会発表〕(計 33 件)

- (1) 橋田昌樹,宮坂泰弘,清水雅弘,時田茂樹, 阪部周二, "短パルスレーザーナノレーザ ーアブレーションによる金属の微細構造 形成",第78回レーザー加工学会講演会, 【特別講演】,pp.87-90,2012.12.14,アク トシティー浜松コングレスセンター
- (2) <u>M. Hashida</u>, M. Miyasaka, M. Shimizu, T. Ogata, H. Sakagami, <u>S. Tokita</u>, and <u>S. Sakabe</u>: "Mechanism of femtosecond laser nano-ablation for metals", Advanced Laser technologies (ALT2012), [Plenary Talk], 2-6, September 2012, pp. 140-141, Thun Switzerland.
- (3) <u>M. Hashida</u>, M. Miyasaka, Y. Ikuta, T. Ogata, H. Sakagami, <u>S. Tokita</u>, and <u>S. Sakabe</u>: "Periodic Grating Structures Self-formed by Femtosecond Laser Ablation for Metals", 13th International Symposium on Laser Precision Microfabrication (LPM2012), 15 June 2012, Washington, DC
- (4) <u>M. Hashida</u>, M. Miyasaka, Y. Ikuta, T. Ogata, H. Sakagami, <u>S. Tokita</u>, and <u>S. Sakabe</u>:" Periodic grating structures on metals induced by femtosecond laser pulses", The 8th Asia Pacific laser Symposium (APLS2012), 27-30 May, 2012, Huangshan, China.
- (5) <u>M. Hashida</u>, Y. Miyasaka, Y. Ikuta, <u>S. Tokita</u> and <u>S. Sakabe</u>: "Mechanism for crystal structure transformation on metal surface by femtosecond laser pulses", 11th International Conference on Laser Ablation (COLA2011), pp. 34-35, 14 November 2011, México.
- (6) <u>橋田昌樹</u>, 生田美延, 宮坂泰弘, <u>時田茂</u> <u>樹</u>, <u>阪部周二</u>, "フェムト秒レーザー誘起

ナノ周期構造の結晶構造",第72回応用 物理学会学術講演会,pp.04-218, 2011.8.31,山形大学

- (7) <u>M. Hashida</u>, Y. Miyasaka, Y. Ikuta, <u>S. Tokita</u> and <u>S. Sakabe</u>: "Periodic nano -grating structures produced by femtosecond laser pulses for metals with low- and high-melting points", International Symposium on Laser Precision Microfabrication (LPM2011), pp. 136, 9 June 2011, Takamatsu.
- (8) <u>M. Hashida</u>, Y. Miyasaka, Y. Ikuta, <u>S. Tokita</u>, and <u>S. Sakabe</u>:" Dependence of the periodic structure interspaces on laser fluence for metals irradiated with femtosecond laser", Conference on lasers and Electro Optics 2011 (CLE02011), pp. JTuI110, 3 May 2011, Baltimore, USA.
- (9) 橋田昌樹, 生田美延, 宮坂泰弘, 時田茂 樹, 阪部周二, "フェムト秒レーザー照射 による金属薄膜の結晶構造観察 II"第58 回応用物理学関係連合講演会, 【量子エレ クトロニクス分科内招待講演】, 2011.3.26, 神奈川工科大学
- (10) 橋田昌樹, 生田美延, 宮坂泰弘, 時田茂 樹, 阪部周二,"フェムト秒レーザー照射 による金属表面周期構造自己形成機構", 日本物理学会 2010 年秋季大会, pp. 884, 2010. 9. 26, 大阪府立大学
- (11) <u>橋田昌樹</u>, 岡室皇紀, 生田美延, 宮坂泰 弘, <u>時田茂樹</u>, <u>阪部周二</u>,"フェムト秒レ ーザーによる金属表面周期構造自己形成 機構の解明IV~各種金属に対する周期構 造間隔のフルーエンス依存性~", 第71回 応用物理学会学術講演会, pp. 04-265, 2010.9.14, 長崎大学 (他 22 件)

〔図書〕(計2件)

- (1)日本化学会編,「レーザーと化学」,共立 出版(2012) pp. 90-91 執筆
- (2) (社) レーザー学会編,「先端固体レーザー」,オーム社(2011) pp. 263-271, pp. 275-277 執筆

[その他]

ホームページ等

http://laser.kuicr.kyoto-u.ac.jp/index. html

6.研究組織
(1)研究代表者
橋田 昌樹 (HASHIDA MASAKI)
京都大学・化学研究所・准教授
研究者番号: 50291034

(2)研究分担者 なし

(3)連携研究者 阪部 周二 (SAKABE SHUJI) 京都大学・化学研究所・教授 研究者番号:50153903 時田 茂樹 (TOKITA SHIGEKI) 京都大学・化学研究所・助教 研究者番号:20456825 小川 哲也 (OGAWA TETSUYA) 京都大学・化学研究所・助教 研究者番号:40224109 根本 隆 (NEMOTO TAKASHI) 京都大学・化学研究所・助教 研究者番号:20293946