科学研究費助成事業(科学研究費補助金)研究成果報告書

平成 24 年 04 月 02 日現在

機関番号:13901
研究種目:若手研究(B)
研究期間:2010~2011
課題番号:22740157
研究課題名(和文)高輝度フォトカソード電子源の高効率化とコヒーレンスの応用
研究課題名(英文)High-efficient photocathode for high-brightness electron source a the coherence 研究代表者 桑原 真人(KUWAHARA MAKOTO) 名古屋大学・エコトピア科学研究所・特任講師 研究者番号:50377933

研究成果の概要(和文):

NEA 光陰極として、ワイドバンドギャップ半導体を採用する事で、高効率化と高い耐久性を 実現した。活性層厚 100nm の InGaN-GaN 超格子において 1.5%を越える量子効率を得る事に成 功し、従来型が 0.1%程度であるのに対して 1 桁大きい効率を得る事に成功した。また、NEA-GaN では N₂大気圧暴露を行った後でも電子放出が可能であり、従来型 GaAs 光陰極に比べて十分に 高い耐久性を有する事が証明された。

研究成果の概要(英文):

We have achieved a highly quantum efficiency (QE) and a robustness using a wide-band-gap semiconductor. A QE of InGaN-GaN superlattice is about 1.5% in a wavelength of 300 nm, which is tenfold higher than an ordinal photocathode such as GaAs-GaAsP superlattice. Moreover, we have also realized a high durability against residual molecules in a vacuum using the wide-band-gap semiconductor photocathode.

			(金額単位:円)
	直接経費	間接経費	合 計
2010年度	2, 200, 000	660, 000	2, 860, 000
2011年度	1, 000, 000	300, 000	1, 300, 000
年度			
年度			
年度			
総計	3, 200, 000	960, 000	4, 160, 000

交付決定額

研究分野:物理学

科研費の分科・細目:素粒子・原子核・宇宙線・宇宙物理、加速器 キーワード:加速器、半導体光物性、量子スピン、量子デバイス

- 1. 研究開始当初の背景
- (1) フォトカソード型電子源の重要性

これまで NEA (Negative Electron Affinity (負

の電子親和性))表面を有するフォトカソード型(NEA-PC)電子銃は、スピン偏極電子源を主体として開発が進められてきた。そのビ

ーム生成方式の特性から、低エネルギー分散 の高品位電子ビーム生成の可能性が確かめ られつつある。更に NEA-PC 電子銃は、スピ ン偏極電子ビームが生成可能な電子銃とし て唯一の方式である。そのため、国際リニア コライダー(ILC)計画[1]に代表される次世 代高エネルギー加速器に必要不可欠とされ る。また次世代放射光源用電子銃には 0.1 πmm.mrad 程度の超低エミッタンスが求めら れており、これを実現可能なものとして NEA-PC 電子銃の開発が急務とされている。 また低エネルギー実験(物性応用)において も、スピン偏極電子源を含む NEA-PC 電子源 が、高輝度で低エネルギー分散、パルス応答 性を有する高性能電子源として注目を浴び ている。

(2) 国内外の状況

これまでにNEA-PC電子銃は偏極電子源と して各国にて開発が進められてきた。さらに 最近、米国 Jefferson Laboratory (JLab) にお いて放射光源入射器として運転を実現して いる^[5]。これに加え、フォトカソード電子銃 開発はヨーロッパにおいても PHIN^[6]として 盛んに行われ始めており、その重要性から開 発研究の機運が高まっている状況である。そ して現在、わが国(名古屋大、KEK、JAEA、 広島大)と米国(Cornell大、JLab)の双方に て ERL 用 NEA-PC 電子銃の開発が精力的に 進められている。名古屋大学は、これまでフ オトカソード開発で先駆的立場をとってき てきた。さらに 200keV 偏極電子銃開発でも スタンフォード大線形加速器センターの 120keV 電子銃を上回る成果を達成し、世界的 にも主導的立場を取っている。これら成果は、 我が国の ERL プロジェクトにおいて 500keV 電子銃開発へ大いに応用されつつある。

窒化物系新素材を応用した半導体光陰極 (フォトカソード)を開発し、高品位ビーム 性能と高効率を両立したフォトカソード型 電子源の実現を目指す。更にこのフォトカソ ードにより、高効率化と超短パルス化という、 本来トレードオフの関係である性能を同時 に満たす画期的手法を研究開発する。 また電子波のコヒーレンスに着目し、電子ビ ームの持つコヒーレンス長と励起レーザー 由来のコヒーレンスとの関係を、半導体フォ トカソードにおける光-電子変換過程、固体内 輸送過程における物理と絡めて解明する新

3. 研究の方法

たな研究手法を開拓する。

高品位ビーム性能と高効率を両立したフ オトカソード電子源の実現のために、高い吸 収係数を有し且つ NEA 表面を作成し得る物 質として、GaN ならびに InGaN を用いたフォ トカソードを開発する。次に、既存の NEA-PC 電子源にて電子をビームとして発生させ、そ の量子効率の特性ならびに輝度・エミッタン スを測定する。この結果から、この新規材料 による効果を測定する。また、これら輝度・ エミッタンス測定のために最適な装置を構 築する。これらビーム性能と生成初期の状態 を比較するため、放出される電子のエネルギ ー状態を角度分解光電子分析装置を用いて 測定を行う。この結果を受け、半導体フォト カソードにおける光-電子変換過程、固体内輸 送過程における物理と絡めて解明する。

4. 研究成果

NEA フォトカソード材料として、吸収係数 の大きい窒化物半導体を採用する事で、高効 率化と高い耐久性を実現した。まずバルク GaN による NEA 表面作製と測定系の構築を

研究の目的

行った。図1に構築した装置の外観図を示す。 本装置にてバルク GaAs をを用いて NEA 表面 活性化が可能である事を確認した。つぎにバ ルク GaN を用いて NEA 表面作製条件を割り 出し、600℃アニールを行った後 n い Cs と酸 素を表面に添加する事により生成できる事 を見いだした。つぎに、フォトカソード性能 の指標として重要な量子効率(QE)測定を行 った。この結果、図 2 のような QE スペクト ルを得る事に成功した。本スペクトルはp型 GaN 半導体の吸収係数を反映したスペクト ルが得られており、GaAs 表面から GaN に変 更したことによる表面脱出確率の変化は起 きない事が示された。これにより、窒化物半 導体による NEA フォトカソードとしての利 用可能性が示された。

また、NEA-GaN は環境に対して大きな耐 性を示すことを明らかにした。NEA 表面は環 境に大変敏感であり、 10^{-8} Pa 前半の超高真空 環境下において安定動作する。しかしながら GaN を用いた場合は、NEA 作製後 10^{-4} Pa 台 まで N₂を導入しても電子線発生が可能であ る事を確認した。通常の NEA-GaAs でこのよ うな環境下に置いた場合、一時的であっても 電子線発生が不可能になる。よって、 NEA-GaN が長い寿命を持つ表面であり、表 面劣化が起こっても負の電子親和度の状態 を維持できる NEA フォトカソードであるこ とを明らかにした。

図1. 今回開発したNEA表面作製チャンバーの外観

図。本装置は、トランスファーロッドを介して角 度分解光電子分光装置に接続されている。NEA表 面作成後のフォトカソードは超高真空下において 分析室に輸送される。

図2. NEA表面を施したバルクGaNにおける 量子効率スペクトル。横軸に励起波長、縦軸 に量子効率をとってある。

バルク GaN による成果を受けて、次に窒化 物半導体を用いた超格子構造フォトカソー ドの開発に着手した。これは、高い量子効率 を実現しつつ低エミッタンス化を可能にす るためであり、新規に InGaN-GaN 超格子フォ トカソードを設計し作製を行った。 InGaN-GaN 超格子設計のためバンド構造計 算コードを開発した。これを用いて、バンド 間遷移波長が 447nm になるように In 混晶比 と井戸層・障壁層それぞれの層厚を決定した。 図3に設計したInGaN-GaN超格子の構造設計 結果を示す。本計算をもとに超格子半導体を 作製した。図4に作製した半導体のPL 測定 結果を示す。PL データは設計に近い値 (443nm)を示しており、設計通りの超格子 半導体が作製できた。また、この結果は作製 した計算コードが実験と整合しており、本計 算コードが今後のフォトカソード開発にお いて大変有効なツールとなる得る物である。 この新規開発した InGaN-GaN 超格子に NEA 表面を作製し量子効率を測定した結果

を図5に示す通りである。活性層厚100nmの InGaN-GaN 超格子において 1%を越える量子 効率を得る事に成功し、従来型が0.1%程度で あるのに対して1桁大きい効率を得る事に 成功した。また、超格子を反映したバルク GaN より急峻な量子効率の立ち上がりが観 測され、かつ活性層 100nm と薄いにも関わら ず 1.5%という高い量子効率を得る事に成功 した。量子効率を高めたまま、固体中の電子 ドリフト長を短くできることは、短パルス化 を容易にし、偏極電子を考える時、薄い活性 層でも十分吸収できるため減偏極効果の低 減が可能となることを意味する。また、 InGaN-GaN 超格子を用いた実験で電子線生 成を確認しており、超格子構造の採用により 超低エミッタンスの実現を可能とした。窒化 物半導体は、高い熱伝導度と高融点を有する ため、レーザー強度に対するロバスト性が期 待され、大電流かつ長寿命を実現できるフォ トカソードを提案できた。

今回開発したInGaN-GaN超格子フォトカソ ードは、これまでにない高い量子効率を示す ものであり、またその耐久性の高さが示され る結果を得ることができた。これら性能は、 今後のNEAフォトカソードの実用上、大変重 要な意味を持つ結果であり、大きな成功を修 めたと言える。

図3. 開発したInGaN-GaN超格子の構造

図4. 今回新たに設計・作製したInGaN-GaN超格子のPLスペクトル。発光ピークは443nmである。

図 5. InGaN-GaN 超格子における量子効率の 励起波長スペクトル。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計5件)

1. "Development of Spin-Polarized and Pulsed TEM",

<u>M Kuwahara</u>, F. Ichihashi, S. Kusunoki, Y Takeda, K Saitoh, T Ujihara, H Asano, T. Nakanishi, N Tanaka

J. Phys.: Conf. Ser. *** (2012) ******. (査読有り)

 "Mean Transverse Energy Measurement of Negative Electron Affinity GaAs-Based Photocathode",

S. Matsuba, Y. Honda, X. G. Jin, T. Miyajima, M. Yamamoto, T. Uchiyama, <u>M. Kuwahara</u>, Y. Takeda

Jpn. J. Appl. Phys. Vol. 51 (2012) 046402.

(査読有り)

 "Dark lifetime degradation of GaAs photo-cathode at higher temperature"
 M. Kuriki, C. Shonaka, H. Iijima, D. Kubo, H. Okamoto, H. Higaki, K. Ito, M. Yamamoto, T. Konomi, S. Okumi, <u>M.</u> <u>Kuwahara</u>, T. Nakanishi Nucl. Instr. and Meth., A 637 (2011) S87-S90-

(査読有り)

4. "Development of spin-polarized transmission electron microscope",

<u>M. Kuwahara</u>, Y. Takeda, K. Saitoh, T. Ujihara, H. Asano, T. Nakanishi, and N Tanaka

J. Phys.: Conf. Ser. 298 (2011) 012016. (査読有り)

5. "Development of a 500-kV photocathode DC gun for ERLs"

N Nishimori, R Nagai, M Yamamoto, Y Honda, T Miyajima, H Iijima, M Kuriki, <u>M Kuwahara</u>, S Okumi, T Nakanishi, and R Hajima,

J. Phys.: Conf. Ser. 298 (2011) 012005. (査読有り)

〔学会発表〕(計7件)

- "Injection system of spin-polarized transmission microscopy", International Symposium on EcoTopia Science 2011, 9-11 Dec. 2011, Nagoya.
- "Development of spin-polarized and pulsed TEM",
 Electron Microscopy and Analysis Group Conference 2011, 6-9 Sep. 2011,
 Birmingham UK.
- "スピン偏極パルス TEM 用電子源と照 射系の開発", 日本顕微鏡学会第 67 回学術講演会, Fukuoka, Japan, 16 May 2011
- 4. "Superlattice photocathode development

for low emittance"

Photocathode Physics for Photoinjectors, Brookhaven National Laboratory, NY, USA, 12-14 Oct. 2010.

- "Pulsed spin-polarized electron source toward a transmission electron microscope", 17th International Microscopy Congress 17th (IMC17), Rio De Janeiro, Brazil, 19-24 September 2010.
- 6. "Development of spin-polarized transmission microscope",
 Workshop on Sources of Polarized Leptons and High Brightness Electron Beam (PESP2010), Bonn, Germany, 21-24 September 2010.

 "スピン偏極パルス TEM 用電子源の特 性評価", 日本電子顕微鏡学会 2010, Nagoya, Japan, 23-26 May 2010

〔図書〕(計0件)

〔産業財産権〕 ○出願状況(計0件) 名称: 発明者: 権利者: 種類: 番号: 出願年月日: 国内外の別: ○取得状況(計0件) 名称: 発明者: 権利者: 種類: 番号: 取得年月日: 国内外の別: [その他] ホームページ等

6.研究組織
(1)研究代表者
桑原 真人 (KUWAHARA MAKOTO)
名古屋大学・エコトピア科学研究所・特任
講師
研究者番号: 50377933

(2)研究分担者なし ()

研究者番号:

(3)連携研究者なし()

研究者番号: