科学研究費助成事業(科学研究費補助金)研究成果報告書

平成24年6月13日現在

機関番号:82645 研究種目:若手研究 研究期間:2010~201 課題番号:22760162	(B) 1			
研究課題名(和文)	自発光計測との定量的な比較を目指した 0H 自発光過程のモデリング			
研究課題名(英文)	Modeling of OH Chemiluminescence for Quantitative Comparison with Chemiluminescence Measurements			
研究代表者				
松山 新吾 (MATSUYAMA SHINGO)				
独立行政法人宇宙航空研究開発機構・研究開発本部・研究員 研究者番号:60392841				

研究成果の概要(和文):本研究では、燃焼シミュレーション上でOH ラジカルおよびH2Oの 自発光過程をモデリングし、自発光計測との定量的な比較を実現することを目指した。シミュ レーション上で自発光過程をモデリングするために、化学的励起・熱的励起・衝突失活・光の 放射・吸収などの素過程が燃焼計算プログラムに組み込まれた。構築した自発光計算プログラ ムによって発光強度計測データとの比較が可能となり、比較結果も十分な精度を実現できるこ とが示された。

研究成果の概要(英文): In this study, flame emission of OH radical and H₂O is modeled in combustion simulation. To model flame emission process, chemical/thermal excitation, collisional quenching, and light emission/absorption are incorporated into combustion code. The developed code enables to make quantitative comparison between simulation and chemiluminescence measurement. The results of comparison show that acceptable accuracy is achieved by the modeled flame emission.

交付決定額

			(金額単位:円)
	直接経費	間接経費	合 計
2010年度	1, 200, 000	360, 000	1, 560, 000
2011年度	1, 900, 000	570, 000	2, 470, 000
年度			
年度			
年度			
総計	3, 100, 000	930, 000	4, 030, 000

研究分野:航空宇宙工学 科研費の分科・細目:機械工学・熱工学 キーワード:OH 自発光、H2O 自発光、燃焼流、シミュレーション工学

1. 研究開始当初の背景

ロケットエンジン燃焼試験では、燃焼器内 部が高温・高圧条件になるため PLIF などの 先端的レーザー計測の実施は難しく、OH 自 発光計測などの比較的容易な計測のみが実 施される。自発光計測からは時間平均データ しか得られない上に定量性の評価にも問題 があるため、燃焼器内で生じる現象は殆ど把 握できないままエンジンの開発が進められ ている。燃焼シミュレーションは、実際の燃 焼器内で生じている燃焼現象に対する理解 を飛躍的に進めることが期待できるツール の一つであるが、ロケットエンジン燃焼に対 する解析精度の検証は十分に行われている とは言い難い。

現状で燃焼シミュレーションの検証用に 利用できる計測データは自発光計測がほと んど唯一であるが、シミュレーションの結果 (OH 濃度)と自発光計測データ(発光強度) とを比較しようとした場合、OH 濃度と発光 強度との間の量的な相関が明らかではない ため、「火炎の広がり傾向が計測と類似して いるかどうか」というような非常にあいまい な比較が行えるのみである。

実験データに対して定量的に意味のある 比較を行うことができるようになれば、燃焼 シミュレーションの信頼性を高めることが できる。さらに、精度の検証されたシミュレ ーションから得られた結果を詳細に解析す ることで、実際の燃焼器内で生じている燃焼 現象に対する理解を飛躍的に進めることが できるはずである。

2. 研究の目的

そこで、本研究では、燃焼シミュレーショ ン上において、

・OH ラジカルの電子励起・励起失活過程 を考慮し、電子励起状態を評価 ・電子励起した OH ラジカル (OH*) から の光の放射・吸収過程を計算、発光強度を 評価

することでOHの自発光過程をモデリングし、 自発光計測との間で定量的に意味のある比 較を実現することを目指す。この試みが十分 な精度で実現できれば、自発光計測データを 利用して燃焼シミュレーションの検証を進 めることができるようになり、検証された燃 焼シミュレーションプログラムはロケット エンジン内の燃焼現象を理解するために役 立てることができる。

3. 研究の方法

OH ラジカルによる発光は、以下の過程から成り立っている。

- ・電子励起過程 ・化学反応による電子励起、 $O + H + M \rightarrow OH^* + M$
 - ・ 衝突による(熱的)電子励起、
 OH + M → OH* + M
 - 光の吸収、 $OH + h\nu \rightarrow OH^*$
- 電子励起状態の失活過程
- ・ 衝突による励起失活、
 OH* + M → OH + M
 ※のなけ、OU* 、 OU*
- 光の放射、 $OH^* \rightarrow OH + hv$

最後の過程である、光の放射による発光強度 が自発光計測で計測されるデータに相当す る。

本研究では、これらの全ての過程を燃焼シ ミュレーション中で考慮し、自発光過程を直 接モデリングすることでOHの発光強度を評 価する。

また、本研究では OH ラジカルによる発光

過程以外にも、H₂Oによる発光過程について モデリングを行った。これは、研究開始当初 に対象として考えていたOHによる発光と同 様に、H₂Oによる発光でも定量的な比較を実 現できる見込みが得られたためである。H₂O による発光は電子励起状態ではなく振動・回 転励起状態による発光過程であるため、以下 の過程を燃焼シミュレーション中で考慮す る。

・励起過程

- 熱的励起、 $H_2O + M \rightarrow H_2O^* + M$ - 光の吸収、 $H_2O + h\nu \rightarrow H_2O^*$
- ・励起状態の失活過程
- ・ 衝突による励起失活、
 H₂O*+M → H₂O+M
- 光の放射、H2O* → H2O + hv

図1 光の伝搬過程を模擬するための光学系、 矢印付の実線は火炎中を伝搬する光を表し ている

燃焼シミュレーション中で自発光過程を 模擬するためには、さらに、空間中を光が伝 搬する過程を考慮しなければならない。本研 究では、図1に示すような光学系に対して光 の伝搬過程を計算し自発光過程を模擬した。 自発光計測は火炎が放射する光を高速度カ メラにより撮影するものであるが、シミュレ ーションでは光線追跡法と呼ばれる手法に より火炎中を伝搬する光を模擬し、カメラに 入射する光の強度を求める。火炎内部を光が 伝搬する途中、通過する火炎の各要素が光を 放射・吸収することにより、その強度を変化 させながら最終的にカメラの各画素に入射 する。以上のシミュレーションによってカメ ラに入射する光の強度は、実際の自発光計測 で得られる計測データそのものであり、両者 は直接比較をすることができる。

4. 研究成果

最初に、OH 自発光をモデリングするため に必要な4つの物理過程(化学的励起、熱的 励起、衝突失活、光の放射・吸収)を燃焼計 算プログラムに組み込んだ。構築した自発光 計算プログラムを用いて、Petersen らが行っ た 衝 撃 波 管 に よ る 実 験 (Journal of Propulsion and Power, Vol.20, No.4, 2004, pp.665-674.)の模擬を試みた。この実験では、 衝撃波背後で放射されるOH 発光強度の時間 履歴が計測されており、構築したプログラム によって発光強度データが十分な精度で再 現できることを確認した。

図2 発光強度の時間履歴の比較

図2に示した結果は、反射衝撃波背後で生 じるOHの発光強度を比較した結果である。 反射衝撃波背後の状態は、T=1244K、 P=1.15atm、O₂=1.5%、H₂=3.0%、Ar=95.5% (モル分率)とした。化学的励起のモデルに は Petersen らのモデル (AIAA Paper 2003-4493)を、熱的励起・衝突失活のモデ ルには Hidaka らのモデル (Journal of Physical Chemistry, Vol.86, No.8, 1982, pp.1429-1433.)を、光の放射・吸収過程の 計算には Luque らのデータ (*Journal of Chemical Physics*, Vol.19, No.2, pp.439-448, 1998.) を用いた。参考文献では発光強度の 絶対値に関する情報は得られなかったため、 ここでは最大値により正規化した結果を比 較した。発光強度の時間履歴の比較結果が示 すように、発光強度の立ち上がり、減衰の過 程が良く再現されている。

さらに、OH と同様に実験計測との定量的 な比較が期待できる、H₂O による可視~赤外 領域の発光についてもモデル化を実施した。 H₂O の発光過程は熱的平衡状態にある振 動・回転モードによるため、熱的励起・失活 および光の放射・吸収の 2 つの物理過程を燃 焼計算プログラムに組み込んだ。H₂O によっ て放射される光の計算例を図 3 に示す。本研 究では H₂O による光の放射・吸収過程を計 算するために、HITEMP2010 データベース (*Journal of Quantitative Spectroscopy* and Radiative Transfer, Vol.111, 2010, pp.2139–2150.)を用いた。

図 3 H₂O による発光の計算例(T=3040K、 P=1atm、H₂O=55.84%、モル分率)

図3に示すように、H2Oによる発光は可視~ 赤外領域(600nm~10μm)にわたって広く 分布している。発光強度にみられる微細なス ペクトル構造は個々の励起状態遷移による ものであり、結果として光の放射・吸収過程 は強い波長依存性を持つことがわかる。

次に、燃焼シミュレーション上で自発光過 程を模擬した結果を図4に示す。この結果は ある瞬間の火炎に対して光の放射・吸収・伝 搬を計算し、カメラに入射する発光強度の空 間分布を求めたものである。発光強度の空間 分布は実際の自発光計測で得られる計測デ ータと酷似しており、本研究の手法によって 自発光過程が燃焼シミュレーション上で模 擬できていることがわかる。また、発光強度 分布にみられる強弱は火炎のしわ状の構造 に対応していることも、この結果によって知 ることができる。このような知見は計測デー タのみから得ることは難しく、燃焼シミュレ ーションを利用することで初めて得られた ものである。

図 4 燃焼シミュレーション上で模擬した自 発光計測の例、(上)温度の等値面、T=2000K、 (下)カメラに入射した発光強度の空間分布

図 5 火炎構造(温度分布)、および、火炎が 放射する発光強度分布の例

さらに、燃焼シミュレーション上で模擬した自発光データからは、ある発光強度分布が どのような火炎構造を表しているかについても知ることができる。そのような例を図5

に示す。この結果はある瞬間の火炎構造(上 図、断面分布)と、その火炎が放射する発光 強度の分布(下図)を示している。 光の伝搬 方向は上図の右から左へ向かう方向である。 これらの対比から、火炎が薄くなっている部 分では発光強度が小さく、火炎の厚い部分で は強度が大きいことがわかる。また、火炎の 縁の部分を通過する光は、高温ガス中を長い 距離通過してくるため発光強度が大きくな っていることもわかる。これらの知見は自発 光計測データからは知ることが難しく、シミ ュレーション上で自発光過程を模擬したこ とで初めて理解することができるものであ る。燃焼シミュレーション上で自発光計測を 模擬することは、単純に実験データとの比較 を可能にするだけでなく、実験データがどの ような火炎構造を反映しているのかという ことを理解する上で非常に有効であること も、本研究の結果によって示された。

図 6 燃焼シミュレーションによる自発光デ ータと計測データとの比較、横軸はノズル出 ロからの距離、縦軸は自発光強度から評価し た乱流の積分長を表す

図6に、燃焼シミュレーションによる自発 光データと実際の自発光計測を比較した結 果を示す。実際の自発光計測では発光強度の 定量的な校正が行われなかったため、ここで は、発光強度分布から評価した乱流積分長を 比較した結果を示す。比較の結果から、シミ ュレーション上で模擬した自発光データに より評価した積分長は計測データと比べて 過小評価するものの、定性的な傾向が良く再 現できていることがわかる。シミュレーショ ンによる積分長が過小評価となっている原 因としては、シミュレーションと計測のレイ ノルズ数が一致していないこと(計測はシミ ュレーションに対して半分程度のレイノル ズ数条件)、また、計測では光の散乱や屈折 による画像のボケによって誤差があること、 などが考えられる。

光の散乱・屈折による計測誤差の評価など、 定量性評価の精度向上については若干の課 題が残されているものの、本研究で目標とし た、シミュレーションと自発光計測データと の定量的な比較を実現することができた。本 研究の成果により、ロケット燃焼試験で取得 される自発光データを検証用データとして 利用することが可能になり、燃焼シミュレー ションの検証が進むことで予測精度の向上 が期待できる。以上の成果から、本研究の目 的はおおむね達成されたものと考える。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔学会発表〕(計3件)

- ①<u>松山 新吾</u>、水素・酸素火炎における火炎 自発光のモデリング、第 25 回数値流体力 学シンポジウム、2011 年 12 月 21 日、大 阪大学(吹田市)
- ②松山 新吾、噴流拡散火炎における火炎自 発光と乱流構造との相関に関する研究、日 本航空宇宙学会第42期年会講演会、2011 年4月15日、東京大学(東京都)
- ③松山 新吾、噴流拡散火炎における火炎自 発光と乱流構造との相関に関する数値的 研究、日本航空宇宙学会北部支部 2011 年 講演会、2011 年 3 月 10 日、東北大学(宮 城県)

6. 研究組織

(1)研究代表者
 松山 新吾(MATSUYAMA SHINGO)
 独立行政法人宇宙航空研究開発機構・研究
 開発本部・研究員
 研究者番号:60392841

(2)研究分担者

なし

(3)連携研究者

なし