科学研究費助成事業 (特別推進研究) 中間評価

課題番号	22H04912	研究期間	令和 4 (2022) 年度 ~令和 8 (2026) 年度
研究課題名	最高エネルギーガンマ線観測で紐	研究代表者	瀧田 正人
	解く宇宙粒子加速器 PeVatron の	(所属・職)	(東京大学・宇宙線研究所・教
	謎	(令和6年3月現在)	授)

【令和6(2024)年度 中間評価結果】

評価		評価基準		
	A+	想定を超える研究の進展があり、期待以上の成果が見込まれる		
0	A	順調に研究が進展しており、期待どおりの成果が見込まれる		
	Α	一部に遅れ等が認められるため、今後努力が必要であるが、		
	A-	概ね順調に研究が進展しており、一定の成果が見込まれる		
	В	研究が遅れており、今後一層の努力が必要である		
	С	研究が遅れ、研究成果が見込まれないため、研究経費の減額又は研究の中止が適当		
		である		

(研究の概要)

本計画ではボリビアのアンデス高原 (標高 4,740m) に宇宙線・ガンマ線観測装置を設置し、未開拓の南天において、世界最高感度で最高エネルギー(sub-PeV から PeV 領域)ガンマ線の広視野連続観測を行う。地上に空気シャワーの電磁成分を捉える粒子検出器を 260,000 平方メートルに渡り設置し、地下にミューオンを捉える検出器を 6,500 平方メートルに渡り設置する。空気シャワー中のミューオン粒子数を捉えることにより、ガンマ線とバックグラウンドである原子核宇宙線とを分離し、高い感度でのガンマ線観測を行う。

(意見等)

物価高騰のためミューオン検出器については当初計画の 96 単位から 64 単位への、プラスチックシンチレーション検出器については 480 台から 401 台への規模縮小を余儀なくされた。それに加えて、新型コロナウイルス感染症や設計変更の影響によって、観測の開始が 1 年遅延する予定となったが、プラスチックシンチレーション検出器を高密度 (15 m間隔)で 83,000 平方メートルに設置する ALPACA 空気シャワー観測装置で研究期間中に 1 年半観測することで、100 TeV 以下では当初の計画より良い感度を達成する見込みである。また、観測装置の較正やシミュレーションのチューニング作業を前倒しで行うことで、本観測開始後速やかにデータ解析に移ることができる体制を構築した点は評価できる。加えて、当初の研究期間を超過する可能性が高いものの、プラスチックシンチレーション検出器を一部低密度 (40 m間隔)にして 260,000 平方メートルに設置する new Large ALPACA への拡張によって、当初計画と同等の観測を実現し、期待どおりの成果を上げることが見込まれる。