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We developed a novel crystal growth technique named "indirect sublimation”,
and successfully formed organic semiconductor single-crystals on large-area without the use of
vacuum or solvents. These numerous freestanding single-crystals were transferred onto device
substrates through a simple press-transfer and rubbing process, creating a so-called "
multi-single-crystal (MSC)" film, where small crystals overlap to cover large areas. We confirmed
that organic field-effect transistors (OFETs) using this MSC film as the active layer perform
similarly to single-crystal devices. By combining such OFETs, we successfully fabricated pseudo-CMOS

devices that exhibit inverter characteristics similar to CMOS devices. Furthermore, using our
unique crystal structure simulation algorithm, we successfully developed a novel ultra-high mobility
organic semiconductor material, which also has potential for MSC film applications.
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Organic field-effect transistors (OFETs) are garnering considerable interest for their potential
electronic device applications. Single crystals (SC) of organic semiconductors are particularly significant,
not only for providing insights into the fundamental properties of these materials but also for enhancing
device performance due to their highly ordered crystalline structures. However, SCs require tedious
handcrafting for each OFET, involving the precise placement of a separately grown organic semiconductor
SC onto a device’s electrodes, or the reverse. Moreover, the production of SCs generally involves complex
processes, necessitating expensive equipment for vacuum conditions and extended processing times.
Therefore, for many practical applications, flexible thin films of organic semiconductors, capable of being
deployed over large areas, are favored over SCs. Such printable electronics consume large amounts of
solvent (1000 to 10000 molar ratio to organic semiconductor) which often contain halogens. These solvents
pose significant environmental concerns due to their deleterious effects.

We have recently developed a novel ultra-high mobility (> 30
cm? V' s) material 1,3,6,8-Tetrakis (methylthio)pyrene (MT- (Eg'f:;ff;
pyrene). Unfortunately, solubility of this material in common s
organic solvents was too low to attempt thin-film formation by
solution methods. During fabrication of SC-OFETSs by lamination
of physical vapor transport (PVT) grown thin-plate SCs of MT-
pyrene onto a device substrate and painting source / drain
electrodes with colloidal graphite, we have noticed an interesting

(graphite)

phenomenon. Placing such thin SCs on top of each other and o4 pedtiomtves o o
extending SCs in a chain-manner did not result in deterioration of - . Mo o7
device properties, and the resulting “chained-SC” OFET operated 2 02 E s
similarly to an SC-OFET (Fig. 1). Moreover, covering an area of S Yw\Ye. 1T
the substrate with SCs entirely also operated as a single OFET. This j10°
led to the idea that thin-film-like applications for SCs are possible O'Oev = -55V — ; 10"

without use of solvents by developing a method to produce so

v,

calle?d multi-single-crystal  (MSC) films of organic Figure 1. “Chained-single-crystals”
semiconductors. OFET of MT-pyrene.

2. WHEEDHK

The purpose of the proposed research was to develop a practical (simple, scalable, solvent-free, and
vacuum-free) method to fabricate SC OFET based devices such as pseudo-CMOS inverters. For this
purpose, it was proposed to develop a scalable method for crystal growth from vapor phase, and their easy
transfer on the device substrate for MSC film formation. Another important purpose of this research was to
develop novel ultra-high mobility materials potentially suitable MSC film applications.

3. WrgEDTik

The research methods could be divided into three parts: development of simple and scalable method
for crystal growth and MSC film formation; fabrication of MSC-OFETs and MSC-OFET-based devices;
development of novel ultra-high mobility materials.

(1) Crystal growth and formation of MSC films.

The problem of poor scalability of single-crystal growth was solved by developing a novel crystal
growth method named “indirect sublimation” (Fig 2a). In this method, the source material is placed on a
heater covered by a glass plate (blocking substrate) and also covered by a Petri dish. The target substrate is
placed on the top inside of the Petri dish. The sublimated source material escapes from the gap under the
blocking substrate and forms crystals on the above target substrate. The process is performed under
atmospheric pressure (in air for some
materials). This method is based on a (a) Crystal growth Block

. . . . ocking substrate Source
recently reported microspacing in-air spacer @v&por
sublimation (MSS) method [Chem. Mater. j Source :

30, 412 (2018); Nature Commun. 6, 5954 N -

(2014); Chem. Mater. 31, 6696 (2019)], but
introduces a blocking substrate between () Crystal growth
the source and the target substrates and ?
places the whole setup in a semi-confined
space. The blocking substrate is important
for preventing the source powder particles
from directly reaching the target substrate :
(hence the naming of “indirect  Figure 2. (a) Indirect sublimation setup under atmospheric
sublimation”). The semi-hermetical nature ~ pressure. (b) Crystals grown by indirect sublimation.
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Figure 3. Results for indirect sublimation of rubrene (left), (b) DNTT (middle), and CYHEX-NDI (right).

of the space below the Petri dish ensures that almost no material escapes outside, and all are used to grow
crystals on the surface of the lowest temperature. By using this method, remarkably uniform and dense

growth of free-standing crystals can be achieved on a large
(scalable) area almost independent of initial material distribution
(Fig. 2b). It was confirmed that the crystal growth by indirect
sublimation is possible for MT-pyrene, rubrene, DNTT, N,N'-
bis(cyclohexyl)naphthalene diimide (CYHEX-NDI) (Fig.3),
1,3,6,8-Tetrakis (methylseleno)pyrene (MS-pyrene), pentacene,
and others.

The crystals grown by indirect sublimation are free-standing
and still it was not practical to use them for OFET applications. The
conventional method for fabricating single-crystal OFETs is to take
one crystal manually using a tungsten needle and laminate the
crystal on the device substrate (usually Si substrate with modified
SiO; layer). Then, the source and gate electrodes are formed on
each end of the laminated crystal by using physical vapor
deposition and a shadow mask or by painting the colloidal graphite
or gold paste. Since the target substrate in indirect sublimation is a
large flat surface, it was found that the lamination process can be
largely simplified using press-transfer onto CY TOP-coated SiO»/Si
substrate (Figd a). The simple press-transfer of the resulting
crystals onto a target substrate resulted in a uniform coverage by an
MSC film, but the resulting devices showed poor on/off ratio. This
was probably because some of the crystals were not completely
attached to the substrate or to crystals below resulting in gate
voltage not being applied. This problem was solved by introducing
a rubbing machine to push down / remove the excess crystals to /

Figure 4. Formation of multi-single-
crystal film. (a) The device substrate
is pressed against crystals grown on
Al substrate (top) and then moved
onto different section of crystals
(bottom). Note almost all crystals are
removed from Al by pressing. (b)
Rubbing process.

from the substrate (Fig. 4b). Such process resulted in a film of interconnecting and overlapping SC thin
plates (< 0.05 mm? each) covering a relatively large substrate surface (~ 1 cm?).

(2) MSC-OFETs and MSC-OFET-based devices.
OFETs with MSC film of MT-pyrene as an
active layer were completed by painting source /
drain electrodes with colloidal graphite. The A
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OFETs showed almost ideal device
characteristics with on/off ratio of > 10%, and T
high mobility (> 15 cm? V! s1) at < 10 V
operation, comparable to single-crystal devices

Drainl (A)
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(Fig 5a). CYHEX-NDI was tested to produce an U v .
n-type MSC film for complementary circuit s o 20 00 so 10 2 i@ @ oo
application with MT-pyrene. Unfortunately, the cs _ 20

carrier mobility of CYHEX-NDI was largely Vp =5V Voo =5V
reduced in the MSC form from ~0.5 cm? V! 57! 15 4v
down to ~0.03 cm? V' 57!, Although the exact €. sy
mechanism of carrier transport in MSC films is

currently unknown and has to be investigated in 5 2V

more detail, this is probably related to lack of 12")"
out-of-plane carrier transport in CYHEX-NDI. 00 — 4 6
Both MT-pyrene and CYHEX-NDI crystallize Ve (V) V,, (V)

into brickwork structures in which the carrier  Figure 5. (a) MT-pyrene MSC OFET showing mobility of
transport is dominated by the two m-stacking ~ 16.0 cm® V' s™!. The inset is an optical microscope image

directions which both lie in the substrate surface
plane. However, for carrier transport between
the crystals in the MSC film which lie on top of

of the OFET (scale bar is 0.5 mm). (b) Schematic of the
wiring of OFETs to produce a pseudo-CMOS inverter. (c)
Operation of MT-pyrene pseudo-CMOS inverter.



each other, probably charge transport in the thickness direction of the crystals must occur. Such charge
transport is possible to some extent in MT-pyrene due to molecule side-to-side interactions but is blocked
in CYHEX-NDI by the bulky cyclohexyl groups. A suitable n-type material for MSC film applications was
not found yet.

It is possible to fabricate a pseudo-CMOS inverter using four p-type OFETs (Fig. 5b). MT-pyrene
pseudo-CMOS inverter fabricated using graphite paste and gold wiring showed good inverter
characteristics and relatively good gain of ~20 at 5V (Fig. 5c). Similar characteristics were obtained for
MT-pyrene pseudo-CMOS inverter made using OFETs with MoOx/Au electrodes (Fig. 6).
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Figure 6. (a) Optical microscope image and (b) characteristics of a pseudo-CMOS inverter composed of four MT-
pyrene MSC OFETs with MoOx/Au source/drain electrodes.

(3) Development of novel ultra-high mobility materials.

The main material used throughout this research, MT-pyrene, shows ultra-high mobility (> 30 cm? V!
s') in SC-OFETs and very high mobility of > 10 cm? V! sl even in MSC OFETs. On the other hand, MS-
pyrene which is selenium substitution of MT-pyrene, despite having almost identical brickwork crystal
structure (Fig. 6), shows only moderately high mobility of ~ 7 cm? V-! 57! in SC-OFETs. This is because the
small differences between the crystal structures of MT- and MS-pyrene result in large difference in
intermolecular orbital overlaps. This means that choosing the molecules that crystallize into promising
crystal structures is not enough to reliably realize high carrier mobility.
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Figure 6. Molecular structures, optical microscope images, and crystal structures of MT-pyrene (top) and MS-
pyrene (bottom). The transfer integrals in the brickwork layers are indicated as arrows.

To tackle this issue, the applicant has developed a novel
algorithm for brickwork crystal structure simulation named “in
silico crystallization (ISC)”. This algorithm is drastically different
from the conventional crystal structure prediction relying on
random search in vast space. Rather, ISC simulates the brickwork
crystal structure (one target crystal structure type) using step-by-
step optimization of bimolecular interactions. By focusing on face-
to-face (F), side-to-side (S), and end-to-end (E) directions of
molecules, three vectors that define the crystal structure are found
by minimizing the sum of interaction energies of certain molecular
pairs (Fig. 7). This is possible because the intermolecular
interactions in the brickwork structure are dominated by n-nt (F)
interactions followed by S and E, which enables optimization of nt-
sta}cking position without F:onsidering S and E interactions. Using Figure 7. (a) Definition of face, side,
this approach, the subtle differences between the crystal structures 104 divections of a molecule. (b)
of MT- and MS-pyrene were successfully simulated explaining the  Flow of crystal structure simulation of
differences between their carrier mobility. “in silico” crystallization.
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ISC was applied to unknown molecules with similar methylthiolation, which were expected to
crystallize into brickwork structures: 2,5,8,11-tetrakis(methylthio)perylene (MT-perylene), 1,3,8,10-
tetrakis(methylthio)peropyrene (MT-peropyrene), and 2,5,10,13-tetrakis(methythio)terrylene (MT-
terrylene). It was found that MT-perylene and MT-terrylene were not promising as organic semiconductors
despite having a larger n-cores than MT-pyrene. On the other hand, MT-peropyrene was expected to show
high carrier mobility due to large transfer integrals in two m-stacking directions of the simulated crystal
structure. These simulation results were then confirmed experimentally by performing the syntheses of MT-
perylene and MT-peropyrene. The experimental crystal structures of both materials were basically identical
to the results of the simulation, and experimentally evaluated carrier mobilities were 0.2 and 30 cm? V! s
for MT-perylene and MT-peropyrene, respectively. Thus, another example of ultrahigh mobility material
following MT-pyrene, MT-peropyrene, was successfully found using a combination of crystal structure
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Figure 8. MT-peropyrene (a) experimental structure shown as an overlay on top of the structure simulated by ISC.
(b) Comparison of cell parameters of crystal structure simulation and real structure. (c) OFET characteristics of
MT-peropyrene

“manipulation” and crystal structure simulation (Fig. 8).

Unfortunately, the MSC film formation of MT-peropyrene could not be achieved during this research
period. This is because of difficulties of synthesis and handling of the material. Sublimation temperature of
MT-peropyrene is higher than its decomposition temperature under atmospheric pressure because of large
molecule size. On the other hand, indirect sublimation method requires some degree of convection flow for
plate-like crystal growth. Thus, preside condition optimization of temperature and pressure are required for
which we would need to synthesize larger amount of MT-peropyrene. I will continue evaluation of this
promising material in the future. In addition, ISC yielded many more promising novel material candidates
to synthesize for achieving high mobility in SC and MSC applications.

4. WFFERCR

A novel method for simple, scalable, solution-free, and vacuum-free crystal growth named “indirect
sublimation” was developed. The crystal growth achieved by indirect sublimation was almost completely
independent of initial material distribution and achievable on large flat surfaces. Such crystal growth nature
enabled development of a simple press transfer method to produce a so-called “multi-single-crystal (MSC)”
film of interconnecting and overlapping crystals. MSC OFETs of MT-pyrene showed almost ideal device
characteristics and high carrier mobility (> 15 cm? V! s')comparable to single-crystal devices (30 cm? V!
sh). Pseudo CMOS inverters fabricated using four MT-pyrene MSC OFETs showed good inverter
characteristics demonstrating that MSC film-based devices can have similar applications to thin-film-based
ones. A novel crystal structure simulation algorithm, “in silico crystallization (ISC)” was developed for
aiding the search for high mobility organic semiconductor materials. A novel ultrahigh mobility (>30 cm?
V! sy material, MT-peropyrene which is also promising for MSC film applications, was found with the
help of crystal structure simulation.
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