2022 2023

Design _of immunoreceptor protein through the integration of machine learning and
Bayesian inference

Guo, Zhongliang

3,600,000

Pearson 0.684
0.904

Accurate protein-protein binding affinity prediction is essential for
understanding protein function, designing new proteins for treating diseases. However, experimental
measurement of protein binding affinity is time-consuming and expensive. In this study, we addressed

the overlooked issues in current binding affinity prediction models in protein design. We developed
a high-accuracy, fast prediction method that integrates information from both protein 3D structures
and amino acid sequences using multimodal learning. The performance of our model on benchmark
datasets showed a significant improvement over existing methods, with the Pearson correlation
coefficient increasing from 0.684 to 0.904. Additionally, through model analysis, we confirmed the
efficacy of multimodal learning in predicting protein binding affinity.
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