研究成果報告書 科学研究費助成事業

今和 6 年 6 月 1 7 日現在

機関番号: 14401
研究種目: 挑戦的研究(萌芽)
研究期間: 2022 ~ 2023
課題番号: 22K18972
研究課題名(和文)ファンデルワールス2次元層状物質を用いたユニバーサル結晶成長基板の提案と実証
研究課題名(央文)UNIVERSAL growth of functional oxide thin films on van der waals 2D atomic layered material and their device application
研究代表者
田中 秀和(Tanaka,Hidekazu)
大阪大学・産業科学研究所・教授
研究者番号:8 0 2 9 4 1 3 0
交付決定額(研究期間全体):(直接経費) 5,000,000円

研究成果の概要(和文):遷移金属属酸化物(VO2、Fe3O4、NdNiO3)薄膜を、2次元層状物質の1つである、六 方晶窒化ホウ素(Hexagonal Born Nitride: hBN)上へ結晶成長させることに成功し、それらが良好な金属属-絶 縁体相転移を示すことを見出いだした。これにより、その表面に非常に弱いファンデルワールス結合のみ存在す る2次元層状物質は、結晶構造・格子定数の違いによらず様々な物質の薄膜結晶成長が可能となる【ユニバーサ ル基板】となりうることを示した。

研究成果の学術的意義や社会的意義 本研究では、hBNフレーク上で3種類の異なる酸化物材料の薄膜成長とスイッチング特性評価からhBNのユニバー サル基板としての検討を行い、さらに転写によるフレキシブル素子展開の可能性を示した。遷移金属酸化物は金 属-絶縁体相転移、強磁性、強誘電性、超伝導性など多彩な物性を示し、種々のデバイス応用が期待されてい る。2次元層状物質の表面は、非常に束縛が弱く、異種物質の結晶構造・格子定数の違いによらず良質な結晶成 長が可能となる新規合成場となり、異種物質の一層の高機能物性を引き出せると期待され、また2次元層状物質 の特性より、その複合材料も新規なフレキシブルエレクトロニクス材料としての展開が期待される。

研究成果の概要(英文): The growth of functional oxide thin films on two-dimensional layered materials with van der Waals interactions can open their possibility of broadening the device applications. We report the growth of V02, Fe304, NdNi03 thin films on hexagonal boron nitride (hBN) flakes, and realization of good metal-insulator transition property of these thin films. Our results can offer [universal substrate] on which various kind of functional oxides could be crystalized beyond lattice mismatch.

研究分野:酸化物エレクトロニクス

キーワード: 遷移金属酸化物 2次元層状物質 六方晶窒化ホウ素 金属-絶縁体相転移

科研費による研究は、研究者の自覚と責任において実施するものです。そのため、研究の実施や研究成果の公表等に ついては、国の要請等に基づくものではなく、その研究成果に関する見解や責任は、研究者個人に帰属します。

様 式 C-19、F-19-1 (共通)

1. 研究開始当初の背景

(1)3d 軌道に電子を有する遷移金属酸化物は、電子相関由来の様々な物性を持つ。例えば、 相転移である金属-絶縁体転移(metal-insulator transition: MIT)を示す二酸化バナジウム (VO₂)、マグネタイト(Fe₃O₄)、ニッケレート(NdNiO₃)、強誘電性を示す BaTiO₃、超伝 導を示す YBa₂Cu₃O₇ などが存在する。特に MIT を示すものに関しては、その外場による巨 大な電気抵抗変化を用いたセンサ、スイッチ、メモリ等への素子応用を見据えた良質な薄膜 結晶の作製と物性研究が精力的に行われている。こうした酸化物薄膜は通常、格子整合性が 良い酸化マグネシウム(MgO)やアルミナ(Al₂O₃)等の単結晶基板上で薄膜結晶成長が行

われるが、本研究では2次元層状物質を成長 基板として用いている。まずその理由とし て、2 次元層状物質もまた直接遷移半導体 (WSe₂、MoS₂)、単原子層誘電体(六方晶窒) 化ホウ素:hBN)、半金属 (グラフェン) とい った新奇物性を有し、遷移金属酸化物薄膜と の融合は新奇な異種機能ヘテロ界面創製の 観点から興味深い(図.1 (a))。また、2 次元 層状物質は一般的に表面に未結合手を有さ ず、かつ各層が弱いファンデルワールス結合 で結合しており、層ごとの剥離や転写が容易 である。酸化物単結晶基板上での酸化物薄膜 の結晶成長では、界面での強固なイオン/共 有結合により物質が固定され、格子歪みの影 響が MIT 特性等に顕著に現れる。対して、 2次元層状物質上では弱いファンデルワール ス結合が界面で支配的となり、格子整合性の 制限を緩和して成長可能と期待できる。

2. 研究の目的

本研究では、成長させる酸化物として VO₂、Fe₃O₄、NdNiO₃を選定した。VO₂は外場印加 により MIT に伴う巨大抵抗変化を室温近傍で示す。Fe₃O₄は磁性体であり、スピントロニ クス等への応用が近年注目される 3)。NdNiO₃は、エネルギー材料、スイチッチング材料と して注目されている 4)。こうした素子応用に適した薄膜成長の場として、本研究では hBN を採用している。hBN は耐酸化性、絶縁性、機械特性に優れる 2 次元層状物質であり 5,6)、 遷移金属酸化物薄膜は高温の酸素分圧下で成膜するため基板材料として最適である。こう した背景より、hBN 上では種々の結晶構造や格子定数を有する薄膜を格子整合性に無関係 に自由自在に成長させる可能性を期待している(図 1(b))。

3. 研究の方法

バルク単結晶 hBN よりスコッチテープを用いて機械剥離して、MgO 等の基板上に転写した。転写後の hBN フレークの大きさは最大で 100 μ m 程度である。転写した hBN フレーク上にパルスレーザー堆積 (PLD) 法により VO₂、Fe₃O₄、NdNiO₃の成膜を行った。hBN上の薄膜の MIT 特性評価にあたり、マイクロ細線加工を行った。Fe₃O₄細線を例にすると、

フォトリソグラフィとエッチングにより細線を切り出し、その後電極蒸着により電気伝導 特性評価を行った。

4. 研究成果

(1) hBN 上の VO₂ と Fe₃O₄ 薄膜の結晶性評価 VO₂ および Fe₃O₄ の薄膜の結晶化はラマン分光を 用いて確認した。図 2 (a), (b)にそれぞれ VO₂ と Fe3O4 のラマンスペクトルを示す。どちらも hBN のピークに加えて、VO₂および Fe₃O₄由来の明瞭 なラマンピークが観測されており、薄膜の結晶化が 確認された。また、原子間力顕微鏡(AFM)で観察 した両者の薄膜表面構造を図2(a), (b)のインセッ トにそれぞれ示す。hBN 上の VO2 薄膜では平均 490 nm の大きさの結晶粒 (グレイン) が観察され、 これはよく薄膜成長に利用される Al₂O₃ 基板上の VO₂薄膜のそれと比較して約 1 桁大きく、hBN に よる格子歪み緩和に伴う良質な結晶成長が示唆さ れる 7)。hBN 上の Fe₃O₄薄膜に関しても、VO₂薄 膜ほどの大きさではないがグレイン構造が観察さ れている 7)。なお、hBN 上での Fe₃O₄ と VO₂の成 長方位は透過型電子顕微鏡 (TEM) 像から同定を行) 200 った。結果、hBN(001)面に対して VO₂ は正方晶 [110]軸方向、Fe₃O₄は立方晶[111]軸方向にそれぞ れ成長していた 6,7)。VO₂(110)面と Fe₃O₄(111)面 はそれぞれの表面最安定結晶面で、hBN(001)面と それぞれ最低でも10%、25%もの格子不整合を持つ

図2(a) hBN 上の VO₂薄膜のラマンス ペクトル。右上:表面AFM 像。(b) hBN 上の Fe₃O₄ 薄膜のラマンスペクトル。右 上:表面AFM 像

と推定されるが、このような成長様式は hBN が格子不整合によらずに薄膜成長可能な基板 である可能性を示す。VO₂/hBN 細線と Fe₃O₄/hBN 細線の電気伝導特性の結果、両者で MIT に伴う数桁の抵抗変化が観測され、それぞれの転移温度は 340 K (バルク単結晶と同 じ)と 116 K であった 6,7)。VO₂ 薄膜の転移温度は特に基板からの格子歪みに大きく依存 するため、この結果も格子歪み緩和の影響を支持するものである。

(2).hBN 上の VO₂、Fe₃O₄、NdNiO₃薄膜の電気的物性評価

VO₂/hBN フレークも Fe₃O₄/hBN フレーク(さらには NdNiO₃/hBN フレーク)も共に、単 結晶 hBN フレークと同様に様々な場所に転写可能である。転写方法の一例としては、水蒸 気に暴露させた高分子ポリマーを用いて、転写元の基板から剥離し、その後別基板(ここで は SiO₂ 基板)に接着させてフレークを任意の場所に転写する 8,9)。図 3 (a)の左下インセ ットと 図 3(b)のインセットは、それぞれ転写後の VO₂/hBN フレーク、Fe₃O₄/hBN フレ ーク、NdNiO₃/hBN フレークの光学顕微鏡像で、図 3 (a),(b),(c)はそれぞれのフレークの 電気伝導特性である。いずれも転写前後で抵抗変化率、転移温度はほとんど変化せず、転写 後も MIT 特性が維持されている点は特筆に値する。これらの結果は、MIT 特性を用いたフ レキシブル素子等への展開を期待させ、hBN が自由自在な薄膜成長の場のみならず酸化物 エレクトロニクスの新奇展開も可能なフレキシブル基板であることを示す。また、VO₂/hBN フレークにおける電気伝導特性で、階段状の電気抵抗の跳躍変化が見られたことも注目に 値する。MIT は絶縁体領域中に金属ドメインと呼ばれる空間的単位が不均一に出現するこ とで発現し、その挙動はドメインと素子のサイズによって決定される。例えば、Al₂O₃ 基板 上の VO2 薄膜では金属ドメインは 50-70 nm であり、ナノ細線加工により初めて少数ドメ インの捕捉に起因する階段状の電気抵抗の跳躍変化が見られる 9)。一方、VO₂/hBN フレー クでは金属ドメインサイズは平均 500 nm 程度であり、MIT の様子が光学顕微鏡によりそ の場観察できる(図 3 (a)の右上インセット) 10)。このドメインサイズは Al₂O₃ 基板上の VO₂ 薄膜と比較して 1 桁程度大きいため、マイクロスケールでも階段状の急峻な電気抵抗 変化を引き出せる。こうした特性は、スイッチ素子等での素子応用上有用である。11)

図3(a) 転写後のVO₂/hBNフレークの電気伝導特性。左下:転写後のVO₂/hBNフレークの 光学顕微鏡像。右上:340 KにおけるVO₂/hBNフレークの光学顕微鏡像。黒点が金属ドメ インに対応する。(b) 転写後のFe₃O₄/hBN フレークの電気伝導特性。右上:転写後の Fe₃O₄/hBNフレークの光学顕微鏡像,(c) 転写後のNdNiO₃/hBNフレークの電気伝導特 性。右上:転写後のNdNiO₃/hBNフレークの光学顕微鏡像

<引用文献>

- 1) Y. Zhang et al., Nanomaterials 11, 338 (2021).
- 2) E. J. W. Verwey, Nature 144, 327 (1939).
- 3) X. Wang et al., J. Mater. Sci. Technol. 34, 1259 (2018).
- 4) J. Shi, S. Ramanathan et al, Nature Commun. 5 4860 (2014)
- 5) A. G. F. Garcia et al., Nano Lett. 12, 4449 (2012).
- 6) G.-H. Lee et al., Appl. Phys. Lett. 99, 243114 (2011).
- 7) S. Genchi, H. Tanaka et al., Sci. Rep. 9, 2857 (2019).
- 8) S. Genchi, H. Tanaka et al., ACS Appl. Electron. Mater. 3, 5031 (2021).
- 9) H. Takami, H. Tanaka et al., Appl. Phys. Lett. 104, 023104 (2014).
- 10) S. Genchi, H. Tanaka et al., Appl. Phys. Lett. 120, 053104 (2022).
- 11) S.Genchi, H.Tanaka et al, Jpn. J. Appl. Phys., 62, SG1008 (2023).

5.主な発表論文等

〔雑誌論文〕 計2件(うち査読付論文 2件/うち国際共著 0件/うちオープンアクセス 0件) 4.巻 1. 著者名 Genchi Shingo、Nakaharai Shu、Iwasaki Takuya、Watanabe Kenji、Taniguchi Takashi、Wakayama 62 Yutaka, Hattori Azusa N., Tanaka Hidekazu 5 . 発行年 2.論文標題 Step electrical switching in VO2 on hexagonal boron nitride using confined individual metallic 2023年 domains 3. 雑誌名 6.最初と最後の頁 Japanese Journal of Applied Physics SG1008 ~ SG1008 掲載論文のDOI(デジタルオブジェクト識別子) 査読の有無 10.35848/1347-4065/acb65b 有 オープンアクセス 国際共著 オープンアクセスではない、又はオープンアクセスが困難 Г 茎耂ク ¥ 1 1

	4.2
Genchi Shingo, Yamamoto Mahito, Iwasaki Takuya, Nakaharai Shu, Watanabe Kenji, Taniguchi	120
Takashi, Wakayama Yutaka, Tanaka Hidekazu	
2.論文標題	5 . 発行年
Step-like resistance changes in VO2 thin films grown on hexagonal boron nitride with in situ	2022年
optically observable metallic domains	
3. 雑誌名	6.最初と最後の頁
Applied Physics Letters	053104-1~6
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
10.1063/5.0072746	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-

〔学会発表〕 計10件(うち招待講演 5件/うち国際学会 6件)

1.発表者名 Hidekazu Tanaka

2.発表標題

Nano/micro-scale phase change electronics using functional oxides/2D material heterostructures

3 . 学会等名

35th International Microprocesses and Nanotechnology Conference(MNC 2022,)(招待講演)(国際学会)

4.発表年 2022年

1.発表者名

Shingo Genchi, Hidekazu Tanaka

2.発表標題

Step-like electric current switching in VO2/hBN device using individual metallic domains

3.学会等名

35th International Microprocesses and Nanotechnology Conference(MNC 2022,)(国際学会)

4.発表年 2022年

1.発表者名

Hidekazu Tanaka

2.発表標題

New memory technologies

3 . 学会等名

11th imec Handai International Symposium (招待講演) (国際学会)

4.発表年 2022年

1.発表者名

Hidekazu Tanaka

2.発表標題

Functional oxide thin films grown on two-dimensional material toward transferable electronics

3.学会等名

Europeam Materials Research Society 2022 Spring Meeting(招待講演)(国際学会)

4.発表年

2022年

1.発表者名

Boyuan Yu, Shingo Genchi, Httori Azusa, Hidekazu Tanaka

2.発表標題

Observation and analysis of in-plane crystal orientation of VO2 film on CVD-hBN

3 . 学会等名

学術変革領域研究(A)「2.5次元物質科学:社会変革に向けた物質科学のパラダイムシフト」 第4回 領域会議

4 . 発表年

2023年

1.発表者名
 田中 秀和

2.発表標題

強相関酸化物薄膜における 水素誘起相転移の制御と応用

3 . 学会等名

第70回応用物理学会春季学術講演会(招待講演)

4.発表年 2023年

1.発表者名

Hidekazu Tanaka

2.発表標題

Heterostructuring functional oxides and two-dimensional material toward transferable electronics

3.学会等名

The 13th International Conference on Advanced Materials and Devices(招待講演)(国際学会)

4.発表年

2023年

1 . 発表者名

B. Yu, S. Genchi, H. Li, A. N. Hattori, S. Fukamachi, H. Ago, H. Tanaka

2.発表標題

Determining the in-plane crystal arrangement of VO2 film on CVD-grown hBN sheet using transmission electron microscopy

3 . 学会等名

第84回応用物理学会 秋季学術講演会

4.発表年 2023年

1.発表者名

富田 雄揮、中払 周、若山 裕、渡邉 賢治、谷口 尚、李 好博、服部 梓、田中 秀和

2.発表標題

単結晶 hBN フレーク上に作製した VO2 の電流誘起抵抗スイッチングにおけるフレーク境界の効果

3.学会等名

第84回応用物理学会 秋季学術講演会

4.発表年 2023年

1.発表者名

B. Yu, S. Genchi, H. Li, A. N. Hattori, S. Fukamachi, H. Ago, H. Tanaka

2.発表標題

In-plane crystal arrangement of the VO2 film on a chemical vapor deposition grown hBN sheet determined by transmission electron microscope

3 . 学会等名

Advanced Materials Research Grand Meeting MRM2023 / IUMRS-ICA2023(国際学会)

4.発表年 2023年

〔図書〕 計1件	
1.著者名	4 . 発行年
玄地真悟、田中秀和	2022年
2.出版社	5.総ページ数
大阪大学出版会	4
3.書名	
生産と技術	
 幺地具悟、田中秀和 2.出版社 大阪大学出版会 3.書名 生産と技術 	2022年 5. 総ページ数 4

〔産業財産権〕

〔その他〕

https://www.sanken.osaka-u.ac.jp/labs/bis/

6 . 研究組織

0.妍九組織		
氏名 (ローマ字氏名) (研究者番号)	所属研究機関・部局・職 (機関番号)	備考

7.科研費を使用して開催した国際研究集会

〔国際研究集会〕 計0件

8.本研究に関連して実施した国際共同研究の実施状況

共同研究相手国
