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Ultra-small sparse matrix serial computation mechanism with memory transpose
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First, based on a new bisectional neural network (BNN), we devised a
mechanism in which logical PE arrays are flexibly partitioned and mapped to physical computing
units. By adjusting the shape and position of the logical PE array, we demonstrated the ability to
spatially reconfigure functions. Temporal reconstruction ability in terms of precision could be
achieved by adjusting the length of the SC bitstream. It is shown that the energy efficiency is
better than other state-of-the-art approximate computing units. Second, we devised a
non-deterministic learning method for stochastic computing neural networks (SCNN). It was found that

the increase in memory usage caused by long bitstreams can be suppressed, although the accuracy is
slightly degraded.
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A. Training SNN with Ternary Weight

:

Topology of ternary spiking neural network

The backpropagation through time for surrogate gradient: Network Ternarization:
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=03« threshold(1 — |u{()].00}*2 (1) 1) Initialize the weight with full-precision pre-trained
SNN model

2) Ternarizing the full-precision weight with threshold
and scaling factor

3 Ternary weights are only used during the forward
and backward propagation, but not during the
parameter update

C. Binary-ternary dot product of Ternary SNN
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B. Calibration of Residual Block for Deeper SNN
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The calibration of residual block helps to align the two inputs of element-wi
s¢ binary spike and diser

theteby reducing the aceuracy loss caused by

D. Event-Driven Hardware Computing Architecture

A + SNNs can be easily implemented by event-
7 driven hardware computing architecture with

(o -t }-ea
s low power consumption
el B E

‘When the neuron generates a spike. the
control gate will open, and the input spike {0,
1} and ternary weight {1, 0, 1} can be
implemented by AND gate and sign function

GAND-Nets obtain significantly hardware cost
reduction compared to FPSNNs or traditional
full precision ANNs.
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A. Challenges of implementing a fully connected network using SC

[Liu etal., IEEE TNNLS, 2020]
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C. Activation Function Circuits Design

sinh(z) e —e®

tanh(z) = o) Pyl

—to———r-1— I
X=1_X=1_%=1_X=1_K=1 oaf
ONORIEDEPHBINY
X =0 X, =0 X, =0 X=0 X=0 i

o%

* Requires a large number of stochastic number generators

« For a neuron with N synaptic connections, its output of
~ by using a MUX adder.

D. Fully Implementation
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B. BNN-based SC Neuron Circuits Design
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SCAdd(zyw, + w0z +b) =

* Flexible spatial reconfigurability: neurons,

functions and kemels

= Temporal reconfigurability: SC bit stream length

+ Less SNG overhead, and suitable for MUX-based

implementation of SC addition

Neuron(i) = o(SCAdd(z,w) + xowas + b))
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A. Stochastic Encoding B. MPTS-MLP Method

Technique that represents numerical data by a probability of the number of ones () in a bit stream (%) MPTS: " ultiple "arallel |raining " trategy
+ Unipolar [0, 1] MLP: " lulti-! ayer erception Reduce the memory overhead and computation latency
Bipolar [-1,1] PEI6 in conventional Stochs ! ((.)mpulmg Neural Networks
Binary-to-stochastic converter is needed Applying voting mechanism in the SE process
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C. Ultra-Low Bit Stochastic quantization in training B BRl=2R S

« Initialize layer weight/bias in real-valued Original real-valued weights are used and updated
« Encoded input data and layer weight/bias are used  in the backward propagation not the
in forward propagation

Threshold Function is bypassed using straight-
through estimator

i 1-bit Unipolar
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Input/Weight

- 1-bit Unipolar
Input = 1-DitSE —* 7
L i Stochastic Input Random Number
s Applying thresholds for neurons instead of

Normalization

Activation —— —  1-bit Activation @l
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