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Arithmetic geometry is the study of integral or rational solutions of systems of
polynomial equations. For this, it 1s often useful to study the solutions in other domains, like complex
number, real numbers, finite fields, or p-adic fields. An important invariant of such solution sets are
motivic cohomology, higher Chow groups, and Suslin homology. During this project, | studied these

invariants, and proved several interesting results about them.



1. RRESTIOER

The relationship of motivic cohomol-
ogy, higher Chow groups and Suslin homol-
ogy to other parts of arithmetic geometry
has been established for a long time.

For an smooth and projective scheme
over an algebraically closed field, Rojtman,
Bloch and Milne proved that the albanese
map induces an isomorphism of the tor-
sion groups of C Hy(X) and of the albanese
variety of X. This result has been gener-
alized to smooth (not necessarily projec-
tive) schemes by Spiess-Szamuely if one re-
places the Chow group by Suslin homology
and the albanese abelian variety by the al-
banese semi-abelian variety.

Kato-Saito proved that CHy(X) is
finitely generated, and there is an injection
with dense image C'Hy(X) — 7{(X) to
the abelianized etale fundamtental group
if X is smooth and proper over a finite
field or regular, proper and flat over the
Z. 'This generalizes the finiteness of the
class group and the isomorphism of the
class group with the Galois group of the
Hilbert class field in case X = Spec Ok.
This result on class field theory has also
been generalized to smooth, but not nec-
essarily proper, schemes by Schmidt and
Spiess.

The results above boil down to du-
ality theorems and comparison between
motivic cohomology and etale cohomol-
0gy. Kato defined homology groups
HX(X,Z/m) measuring the difference be-
tween motivic cohomology and etale coho-
mology, and and conjectured that for regu-
lar and proper X over a number ring or fi-
nite field, H(X,Z/m) vanishes for i # 0.
This is an important tool to relate motivic
and etale cohomology and generalizes the
theorem on class field theory mentioned

above. Kato’s conjecture was proven by

Jannsen, S.Saito and Kerz (under resolu-
tion of singularities for the p-part in char-
acteristic p). An analog of this conjecture
was proven by S.Saito and Sato for regu-
lar proper varieties over complete discrete
valuation rings.

2. REOEK

One of the main goals of this research
was to generalize results on higher Chow
groups to schemes over local and global
fields. In particular, to establish the rela-
tionship between motivic cohomology and
etale cohomology, and to see to which ex-
tend duality theorems hold is such situ-
ations. Moreover, I wanted to generalize
the above results on class field theory and
Rojtman’s theorem to schemes which are
not-necessarily smooth.

3. ARDAE

Most of mathematical research is done
with pencil and paper. But in order to ex-
change ideas, it is often necessary to com-
municate with other experts in the field.
Many ideas evolve in informal discussions
with other mathematicians.

(1) Organization of international con-
ferences

In order to be up to date and learn about
the newest development, I used the grant
to help organize a yearly workshop on mo-
tives in Tokyo (together with S.Saito and
T.Terasoma). 1 am also a coorganizer
with A.Huber, M.Levine and U.Jannsen of
the tri-annual conference on algebraic K-
theory and motivic cohomology in Ober-
wolfach.

(2) Attendance of international and
national conferences

I attended many conferences, both inter-
nationally and in Japan, where I pre-
sented my work, learned from other talks,



and discussed mathematics with other re-
searchers. See below for the conferences I
attended and gave presentations at.

(3) Joint reserach projects with for-
eign institutions

In order to generalize the results on
class field theory of schemes to sin-
gular schemes, I worked together with
A.Schmidt in Heidelberg. In order to facil-
itate this work, I visited Heidelberg once a
year, and Schmidt came to work with me
to Japan.

(4) International exchange

I visited several researchers at their in-
stitutes to discuss my research with them,
and I invited researchers to discussion and
give presentations to Japan.

4. REKRE
(1) ELKER

(D The comparison of motivic cohomology
and etale cohomology over henselian dis-
crete valuation rings, was more difficult
than anticipated, and is still in progress.
As a start, I proved structure results and
duality results about integral etale mo-
tivic cohomology over algebraically closed
fields, finite fields, and local fields. This
has been written up in a preprint and sub-
mitted for publication.

@ I generalized Rojtman’s theorem, stat-
ing that the torsion subgroup of the Chow
group of zero cycles of a smooth projective
variety over an algebraically closed field is
isomorphic to the torsion subgroup of the
Albanese semi-abelian variety. I showed
that if one replaces the Chow group by
Suslin homology then this holds for nor-
mal schemes (this was previously known
for smooth schemes by work of Spie-

Szamuely) [5]. In order to achieve this, I

first had to prove a descent theorem for
Suslin homology [7]. T also wrote a survery
article explaining the background of this
theorem [6].

@ In an international collaboration with
Alexander Schmidt (Universitdt Heidel-
berg, Germany) we studies class field the-
ory of varieties over algebraically closed
fields and finite fields [1], [2].
braically closed fields we showed that an

Over alge-

explicit map constructed by us induces an
isomorphism between the tame abelianized
fundamental group mod m and the first
Suslin homology group mod m (if either
m is invertible in the field or if resolu-
Over finite
fields, we proved that the enlarged tame

tions of singularities exist).

abelian fundamental group is finitely gen-
erated (up to the part coming from the
base-field). We then constructed a surjec-
tion of a modified version of Suslin homol-
ogy (called Weil-Suslin homology) to this
enlarged abelianized fundamental group,
and proved that the kernel is the maxi-
mal divisible subgroup if resolution of sin-
gularities exist. In particular, we obtain
an isomorphism of pro-finite completions.
This generalizes work of Kato-Saito (for
smooth and proper schemes) and Schmidt-
Szamuely (for smooth schemes).

@ 1 proved two results which were not di-
rectly related to the project, but which I
found while working on the project. The
first is a duality for Z-construcible sheaves
for curves over finite fields [8], a gener-
alization of a result of Lichtenbaum for
smooth and proper curves to arbitrary
curves. The second is a result giving sev-
eral isomorphic versions of Parshin’s con-
jecture, which states that higher algebraic
K-theory of smooth and proper schemes
over finite fields is torsion [4].

(2) BRRDOERANTORESR T & impact
My results are used and quoted by a other



mathematicians for their research. I was
also invited to many international and na-
tional conferences to present my work, and
invited to several universities to have sem-
inar talks and discussion of my results.
(3) SHRORE

I am continuing to work on motivic coho-
mology over global fields and local fields.
My current project is to understand the
motivic Tate-Shafarevich group, which ex-
presses those motivic cohomology classes
of varieties over a global field which vanish
over each localization. I am trying to un-
derstand in which degrees this group can
be expected to be finite.
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