科学研究費助成事業

研究成果報告書

平成 26 年 6月 10 日現在

機関番号: 1 2 2 0 1
研究種目: 基盤研究(B)
研究期間: 2011 ~ 2013
課題番号: 2 3 3 6 0 0 2 6
研究課題名(和文)発生生物学への応用を目的とした光コヒーレンストモグラフィ装置の開発
研究課題名(英文)Optical Coherence Tomography for Embryology Application
研究代表者
谷田貝 豊彦 (Yatagai, Toyohoko)
宇都宮大学・オプティクス教育研究センター・教授
研究者番号:90087445
交付決定額(研究期間全体):(直接経費) 16,000,000 円 、(間接経費) 4,800,000 円

研究成果の概要(和文):蛍光たんぱく質技術などの発展により、生きたままの状態で生体の可視化が出来るようになり、細胞生物学は飛躍的発展をとげた。本研究では、発生学的研究が進んでいるメダカを取り上げ、初期発生から器官 ・臓器の発生までを、蛍光たんぱく質遺伝子導入無しに三次元可視化する技術の開発を行う。可視化の手段として、眼 底イメージング技術である光コヒーレンストモグラフィ(OCT)を改良して、水中観測可能な高解像度・高速OCTを開発 し、メダカの器官・臓器の発生を非侵襲時系列的に三次元イメージングすることが可能となった。

研究成果の概要(英文): Some advanced techniques, such as GFP, enalbe us to make in vivo imaging of biolog ical samples. In this research, an OCT imaging system for 3D imaging of Medaka fish has been developped, b y which the eariy state of embriyo and some organs can be imaged without GFP technology. The OCT used in r etina imaging is improved to make 3D imaging of moving fish in water.

研究分野:応用物理学・工学基礎

科研費の分科・細目:応用光学・量子光工学

キーワード: OCT 光干渉断層影像法 メダカ 三次元可視化

1. 研究開始当初の背景

DNA 構造の発見に始まる分子生物学・遺 伝子工学の発展により、生物学・生命科学 分野の研究は、大きく展開している。DNA が 生命の共通の遺伝分子であり、様々な生物 の生命活動も遺伝子レベルでみると「共通 の仕組み」が存在することが分かってきた。 酵母からほ乳類まで保存されている共 通の仕組みのある場合もある。特に脊椎動 物の間では体のつくりや器官・臓器の構成 が類似しており同じ遺伝子が同様のしくみ で働いていることが分かってきた。その結 果、モデル動物を使った研究により、ヒト の器官・臓器の発生や疾患が解析可能とな ってきた。このような研究の一例として、 ショウジョウバエの心臓組織の三次元観測 がある。ショウジョウバエの心臓とヒトの 心臓は同様の遺伝子異常により同様の心臓 形成異常を引き起こすことが発見され、ヒ トの遺伝的な心臓疾患の研究に、光コヒー レンストモグラフィ (Optical Coherence Tomography、OCT) によりショウジョウバエ の心臓形成・機能発現の解析が行われてい る。また、メダカの突然変異体の研究から ヒト繊毛病の原因遺伝子が発見され、腎臓 肥大、男性不妊など鞭毛に関する遺伝病の 研究・治療に貢献することが期待されてい る。

2. 研究の目的

蛍光たんぱく質技術や蛍光顕微鏡技術の 発展により、細胞内におけるたんぱく質分 子動態や分子相互作用、遺伝子活性化など が簡便に生きたままの状態でイメージング 出来るようになり、細胞生物学は飛躍的発 展をとげた。この流れは、診断医学や発生 生物学などの"組織"や"個体"をあつか う様々な研究分野に波及することは間違い ない。ここでは、脊椎動物の中でも発生学 的研究が最も進んでいるメダカを取り上げ、 初期発生から器官・臓器の発生までを、蛍 光たんぱく質遺伝子導入無しに三次元可視 化する技術の開発を行う。

可視化の手段として、眼底イメージング 技術である光コヒーレンストモグラフィ (0CT)を改良して、水中観測可能な高解像 度・高速 0CT を開発し、メダカの器官・臓 器の発生を非侵襲時系列的に三次元イメー ジングする。モデル動物を使った研究によ り、新機能を持つ遺伝子の同定やヒトの器 官・臓器の発生や疾患の解析などが可能と なり、この分野に飛躍的発展をもたらす。

3.研究の方法

メダカの器官・臓器の発生・発育の状態を 生きたままでその場観測可能な三次元断層 映像装置の開発を行う。この目的を達成する ためには、3 次元分解能が 5μ m× 5μ m× 5μ m の波長走査型スペクトル領域 OCT 装置を開 発する必要がある。そのため、中心波長 800nm、 スペクトル幅 120nm の光源を使用し、映像化 に最適なスペクトル分布を発生させる。走査 速度 140kHz の1次元イメージセンサーを用 い、超高速 OCT 装置を完成させる。更に、水 中観測が必要なため、液浸顕微光学系と収差 補正用の適応光学(A0)システムも導入する。 遺伝子組み換えメダカや突然変異体メダカ の発生初期化過程を、本装置で観測し、脳、 生殖器、心臓・循環器などの器官・臓器の発 生・発育の時間経過を追跡し、単純な構造を もつ初期胚がどのようにして組織や器官の 原基を、正しい領域性に生み出すのかという 発生生物学の基本課題を研究する。

4. 研究成果

生きたままのメダカを水中で観測するため の高速高分解能OCT装置を開発した。図1 に示すようなスペクトルドメインOCT装 置であり、中心波長が840nm、波長幅135nm の光源を使用し、奥行き分解能 4μ m、横分解 能 6μ m を達成した。

図1 波長走査型スペクトル領域 OCT 装置

図2 メダカのOCT像

図3 メダカの卵巣

メダカは、生後20から40日までは性が未 確定し、また、温度変化等によって性転換が 起こる。性決定の過程を研究するためには、 生殖腺の経時的変化を観測することが重要 である。

図4 孵化後60日の卵巣 (未成熟卵)

図5 孵化後90日の卵巣 (成熟卵)

開発したOCT装置の高速性により、心臓や 鰓の動画撮影にも成功した。

図6 メダカの心臓(動画)

5. 主な発表論文等 (研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計11件)

- D. Barada, T. Kiire, J. Sugisaka, S. Kawata, and <u>T.Yatagai</u>: "Simultaneous twowavelength Doppler phase-shifting digital holography," Appl. Opt., 50, H237-H244(2011).
- 2 Fernandino JI, Popesku JT, Paul-Prasanth B, Xiong H, Hattori RS, Oura M, Strüssmann CA, Somoza GM, Matsuda M, Nagahama Y, Trudeau VL: "Analysis of sexually dimorphic expression of genes at gonadogenesis early of pejerrev Odontesthes bonariensis using а heterologous microarray," Sex Dev 5: 89-101(2011).
- ③ Masuyama H, Yamada M, Kamei Y, Fujiwara-Ishikawa T, Todo T, Nagahama Y, <u>Matsuda M</u>: "Dmrt1 mutation causes a male-to-female sex reversal after the sex determination by Dmy in the medaka," Chromosome Res 20:163-76 (2012).
- ④ Pauli Falt, Jakub Czajkowski and <u>Barry</u> <u>Cense</u>: "The effect of collimator lenses on the performance of an optical coherence tomography system," Proc. SPIE.,7885, 78850X(2012).
- (5) Kazuhiro Sasaki, <u>Barry Cense</u> and Yoshiaki Yasuno: "Wide field of view retinal imaging using one-micrometer adaptive optics scanning laser ophthalmoscope," Proc. SPIE, 7931,793106(2012).
- (6) <u>B. Cense</u>, Q. Wang, S. Lee, L. Zhao, A.E. Elsner, C. Hitzenberger, and D.T. Miller, "Henle fiber layer phase retardation measured with polarization-sensitive optical coherence tomography," *Biomedical Optics Express*, 4 (11), 2296-2306 (2013).
- ⑦ <u>B. Cense</u> and I. Ibrahim, "Adaptive optics for optical coherence tomography in retinal imaging: a reflection on past and

future developments," *Review of Laser Engineering*, 41 (12), (2013).

(8) Nakamoto M, Fukasawa M, Tanaka S, Shimamori K, Suzuki A, <u>Matsuda M</u>, Kobayashi T, Nagahama Y, Shibata N: "Expression of 3beta-hydroxysteroid dehydrogenase (hsd3b), star and ad4bp/sf-1 during gonadal development in medaka (Oryzias latipes)," Gen Comp Endocrinol 176:222-230(2012).

〔学会発表〕(計 21件)

- <u>谷田貝豊彦</u>、"光で生体の断層をみる―光 コヒーレンストモグラフィー、"(招待講演) 日光シンポジウム、2011年12月18日、日光、 栃木県。
- ② <u>B. Canse</u> and <u>T. Yatagai</u>" High-speed high-resolution polarization-sensitive OCT," SPIE, 2011.1.22-1.27, San Francisco, USA.
- ③ Toyohiko Yatagai, "Full view-angle computer-generated hologram by a fast calculation method based on rigorous diffraction theory," Workshop on Information Optics (招待講演), 2012.8.20, Quebec, Canada.
- ④ Y. Lim, R. de Kinkelder, and <u>B. Cense</u>, "Low cost active retinal tracker for optical coherence tomography", Ophthalmic Technologies XXIII, Photonics West BIOS, San Francisco, California, USA, 2013.
- (5) F.M. Gladys, Y. Lim, M. Matsuda, and <u>B.</u> <u>Cense</u>, "Non-invasive in vivo 3D imaging of medaka using ultra high resolution spectral domain optical coherence tomography," 19th Japanese Medaka and Zebrafish Meeting, Sendai, Japan, September 21-22, 2013.
- (6) <u>B. Cense</u>, "Detection before damage", Biomedical Engineering, Twente University (October 7), Rotterdam Oogziekenhuis (October 8), TU Delft (October 9), AMC Amsterdam (October 9), Radboud Ziekenhuis Nijmegen (October 11), the Netherlands, 2013 (all invited presentations at the universities).
- ⑦ F.M. Gladys, Y. Lim, <u>M. Matsuda</u>, and <u>B. Cense</u>, "In vivo 3D imaging of medaka fish using SD-OCT for gender differentiation," Optical Methods in Developmental Biology II, Photonics West BIOS, San Francisco, California, USA, February 1st, 2014.

〔図書〕(計1件)

○出願状況(計 1件)

名 称 : Device for generating three-dimensional retina image 発明者:<u>B. Cense</u> and R. de Kinkelder 権利者:宇都宮大学 種類:WO 2013141229 A1. 国内外の別:外国

- 6.研究組織
 (1)研究代表者
 谷田貝豊彦 (YATAGAI TOYOHIKO)
 研究者番号:90087445
- (2)研究分担者
 アブラハム・ヨゼフ・センズ (Barry Cense)
 研究者番号: 90566366

(3)連携研究者
 松田 勝 (Masaru Matsud13)
 研究者番号: 20414013

〔産業財産権〕