科学研究費助成事業

研究成果報告書

平成 27 年 6月 3 日現在

機関番号: 37111
研究種目:基盤研究(C)
研究期間: 2011~2014
課題番号: 23540372
研究課題名(和文)金属及び半導体上に形成する同一性酸化シリコン単分子層の構造とバンドギャップ
研究課題名(英文)Structures and band gaps of similar silicon oxide monolayers formed on a metal and a semiconductor
研究代表者
栃原 浩(TOCHIHARA, Hiroshi)
福岡大学・工学部・研究員
研究者番号:80080472
交付決定額(研究期間全体):(直接経費) 3,800,000円
 研究代表者 栃原 浩(TOCHIHARA, Hiroshi) 福岡大学・工学部・研究員 研究者番号:80080472 交付決定額(研究期間全体):(直接経費) 3,800,000円

研究成果の概要(和文): SiC面とMo面に形成する同一性エピタキシャル酸化シリコン単分子膜の構造とバンドギャップに関する研究である。走査トンネル顕微鏡(STM)で観察したところ、酸化シリコン単分子膜の上にSiO2ナノ粒子が、SiCとMoどちらの表面にも完全に覆っていた。SiC面の場合、適切な加熱温度でナノ粒子だけを取り除くことができ,酸化シリコン単分子膜の原子配列をSTMで観測できた.ポイントトンネル分光により、そのバンドギャップが5.5±0.5 eVであり、バルクの酸化シリコンの8.9 eVよりも大幅に小さいことを見出した.Moではナノ粒子を取り除けず,SiCとの比較はできなかった.

研究成果の概要(英文): The purpose of the present study is the comparison of the structure and band gap between similar epitaxial crystalline silicon oxide monolayers formed on SiC and Mo. First, their surfaces were observed by scanning tunneling microscopy (STM), but it was found that many nano-sized particles of SiO2 cover the silicon oxide monolayers entirely both the surfaces. We failed to remove the nano-particles from the Mo surface. However, the nano-particles formed on the SiC surface can be removed by heating the substrate at an adequate temperature. Clear atomic images of the silicon oxide monolayer can be observed on the SiC surface, and they support the previously proposed structure. The band gap of the silicon oxide monolayer could be determined by measuring point tunneling spectroscopy to be 5.5 ± 0.5 eV, which is much smaller than that of bulk SiO2, 8.9 eV.

研究分野: 数物系科学

キーワード: シリコン酸化物 超薄膜 シリコンカーバイド エピタキシャル単分子層 走査トンネル顕微鏡 バン ドギャップ

1.研究開始当初の背景

当初、我々は以下の2つの表面接合系を研 究しており,さらに文献により別の2つの類 似の接合系があるのを知っていた.我々の2 つは,(1)SiC(0001)面上の結晶性酸窒化シ リコン単分子膜と(2)Mo(112)面上の結晶 性酸化シリコン単分子膜である。(1)の最 上面には、化学式 Si₂O₅の結晶性酸化シリコ ン単分子膜が存在し,それと(2)の化学式 Si₂O₅の結晶性酸化シリコン単分子膜は、化 学式の上から同じであり、半導体と金属の表 面上に同一性の結晶性酸化シリコン単分子 膜が形成されていることに興味を抱いた.一 方, 文献 [Benhardt et al. Appl. Phys. Lett. 74, 1085 (1999)]からは、SiC(0001)面には-Si 面と呼ぶ-化学式 Si2O5の結晶性酸化シリ コン単分子膜が形成するのに対して、 Si(000-1)面-C 面と呼ぶ-には化学式 Si2O3 の結晶性酸化シリコン単分子膜の形成が構 造決定とともに示されていた.

2.研究の目的

前項で述べた4種類の結晶性酸化シリコ ン単分子膜のうち、化学組成が Si₂O₅ である Mo(112)と SiC(0001)とについてその構造と 電子状態を調べて比較することをまず目的 とした.金属と共有結合性半導体という非常 に異なった構造と電子状態をもつ基板の上 に,同じ化学組成の結晶性酸化シリコン単分 子膜ができているとすると、基板の影響が結 晶性酸化シリコン単分子膜にどのような影 響を与えているかなどの具体的な興味深い 点の他に,結晶性酸化シリコン単分子層に、表 面新物質として捉えることができるのでは ないかと考えた.

3.研究の方法

まず最初に、各サンプルの低速電子回折 (LEED)パターンの観察を行なった.

- 1-1. Mo(112)上の結晶性酸化シリコン単 分子膜: c(2x2)パターンが文献と同 じく観察された.この表面接合系を Mo(112)/Si₂O₅-c(2x2)と呼ぶ.この c(2x2)構造のLEEDスポット強度 を入射電子線エネルギー(I-Vカーブ と呼ぶ)に対して測定した.得られた 実験 I-Vカーブと、一方、構造模型 を仮定して散乱強度の動力学計算を して理論 I-Vカーブを得,複数の構 造模型の中から両者の一致度の一番 良いものを選んだ.その結果は、当 初仮定していた構造と同じであった.
- 1-2. SiC(0001)上の結晶性酸化シリコン
 単分子膜: (√3x√3)R30°の LEED パ
 ターンを文献と同じように示した.
 この表面接合系を
 SiC(0001)/Si₂O₅-(√3x√3)R30°と呼ぶ.
- 1-3. SiC(000-1)上の結晶性酸化シリコン 単分子膜: (√3x√3)R30°の LEED パ

ターンを文献と同じように示した. この表面接合系を SiC(000-1)/Si $_{2}O_{3}$ -($\sqrt{3}x\sqrt{3}$)R30°と 呼ぶ.こちらのほうが、1-2.の結 晶性酸化シリコン単分子膜のLEEDパ ターンよりもシャープなスポットを 示し、バックグランド強度も低く、 Si $_{2}O_{3}$ 膜の結晶性はSi $_{2}O_{5}$ 膜のそれよ りも、良いことがわかった.この構造のLEED I-Vカーブを測定した.得 られたI-Vカーブは、文献と良い一 致を示したので、文献で提案されている構造であることが確認できた.

Side view

図1.SiC上の2つの結晶性酸化シリコ ン単分子膜の構造模型.菱形は、 (√3x√3)R30°の単位格子を示す. (a) SiC(000-1)/Si₂O₃-(√3x√3)R30°, (b) SiC(0001)/Si₂O₅-(√3x√3)R30°.

図 2(a). SiO2 ナノ粒子に全表面を覆 われた SiC(000-1)/Si₂O₃-(√3x√3)R30° の STM トポ像.V_s = -9.9 V

次に,STM による表面構造の観察を行なった.上記3つの構造: $Mo(112)/Si_2O5-c(2x2)$ 、 $SiC(0001)/Si_2O_5-(\sqrt{3x}\sqrt{3})R30^\circ$ SiC(000-1)/ $Si_2O_5-(\sqrt{3x}\sqrt{3})R30^\circ$ はともに、上に述べたように、明瞭なLEEDスポットを示したので,表面はほぼこれらの結晶性酸化シリコン単分子膜で覆われていると判断していた.しかるに、3つともに数nmサイズのナノ粒子で完全に覆われているのがSTMによって図2(a)のように見出された(1-3.)。 したがって、結晶性酸化シリコン単分子膜 の上に反応余剰のシリコンが酸化されて、 SiO₂ナノ粒子を形成し、それらが表面全体を 覆ったと考えられた.このため、当初予定し た Spring-8 での元素識別(今回は酸素)軟 X線吸収分光と元素識別軟X線発光分光に よる、上記3つの結晶性酸化シリコン単分子 膜に空間限定したバンドギャップを求める ことができなくなった.SiO₂ナノ粒子が共存 するので、限定できなくなったからである。

次に,SiO2ナノ粒子を結晶性酸化シリコン 単分子膜から取り去ることを考えた.ともに 物質としてはSiO2であるので、SiO2ナノ粒 子だけを取り除くのは不可能と思われた.し かし、結晶性酸化シリコン単分子膜は、基板 のSiC表面にエピタキシャル結合しているた め,Si-O結合しかないSiO2ナノ粒子(アモ ルファス構造)よりも壊れたり昇華する温度 はいくらかは高いと考え,900-100°Cの間を 約10°Cごとに900°Cから加熱し,その後室 温で加熱後の表面を観察した.

一方,SiC(0001)/Si₂O₅-(√3x√3)R30°でも状 況はまったく同じであったので,同様に加熱 温度を変え,ナノ粒子を取り除く実験を行っ た.しかし、膜の形状が大きく変化した。

さらに、Mo(112)/Si₂O5-c(2x2)の場合も、 STM により多数の SiO₂ナノ粒子が存在して いた.しかし,この場合,基板が金属である ために加熱制御が現存の装置では難しいた めに、実験が困難になった.

4.研究成果

サンプルSiC(000-1)/Si₂O₃-(√3x√3)R30°を 約 10°C 毎に加熱温度をあげながら、室温で STM 像を観察した.図 2(b)に 970°C まで加 熱した後の STM トポ像を示す. 白く大きな 塊ができているが,原子分解像(ハニカム構 造)が見えるフラットな領域が出現した.予 想に違わず,SiO2ナノ粒子を選択的取り除く ことが 970°C での加熱により、成功した.図 2(b)のなかで黒線で囲った領域の下部を拡大 したハニカム像を図 2(c)に示す.占有準位像 なので、輝点は酸素原子と予想された.構造 決定された結晶性酸化シリコン単分子膜の Si₂O₃-(√3x√3)R30°の構造模型を図 2(c)の八 ニカム像に重ねた.酸素原子は輝点の位置に 存在していることがわかり、STM からも、 図 1(a)の構造をサポートできた。

このように、実空間での原子レベルでの構 造を出現させることができたので,そこでの ポイントトンネル分光により,バンドギャッ プを測定した.トンネル分光スペクトル (STS)により,SiC(000–1)/Si₂O₃-($\sqrt{3}x\sqrt{3}$)R30° のバンドギャップは、5.5 ± 0.5 eV が得ら れた.この値は,バルクのSiO₂の8.9 eV よ りもかなり小さくなっていた.

SiC(000–1)/Si₂O₃-(√3x√3)R30°の結晶性酸 化シリコン単分子膜のバンドギャップの測 定に成功した.

図 2 (b) fig. 2(a)のサンプルを 970°C に加熱し たあとの SiC(000-1)/Si₂O₃-(√3x√3)R30°の STM トポ像 .Vs = -6.0 V. ハニカム格子像が フラットな領域に見える.

図 2 (c) 970°C に加熱したサンプル SiC(000-1)/Si₂O₃-(√3x√3)R30°のSTM拡大ト ポ像.図2(c)で囲った部分の下部を拡大した. Vs = -6.0 V。図1(a)の構造模型を重ねた。

5.主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計1件)

<u>H.Tochihara, T. Shirasawa, T. Suzuki</u>, T. Miyamachi, T.Kajiwara, K. Yagyu, S. Yoshizawa, T. Takahashi, S. Tanaka, <u>F. Komori</u>, Scanning tunneling microscopic and spectroscopic studies on a crystalline silica monolayer epitaxially formed on hexagonal SiC(000–1) surfaces, Appl. Phys. Lett. 查読有、104 (2014) 051601

(1-4).

〔学会発表〕(計4件)

<u>H. Tochihara</u>, <u>T. Suzuki</u>, K. Yagyu, <u>T. Shirasawa</u>, T. Kajiwara, T. Miyamachi, T. Takahashi, <u>F. Komori</u>, S. Tanaka, Ultrathin Crystalline Silica Films Formed Epitaxially on SiC Basal Planes, The 9th International Forum on Advanced Materials Science and Technology, 2014 年 12 月 2 日, Xiamen, Xiamen University, China.

H. Tochihara, <u>T. Suzuki</u>, K. Yagyu, <u>T. Shirasawa</u>, T. Kajiwara, T. Miyamachi, T. Takahashi, <u>F. Komori</u>, S. Tanaka, Scanning Tunneling Microscopy Studies of Epitaxial Silica Monolayers on C- and Si-Faces of Hexagonal SiC Basal Planes, IUMRS-ICA2014, 2014 年 8 月 2 日、福 岡大学(福岡県福岡市)

<u>栃原浩、白澤徹郎、鈴木孝将</u>、宮町俊 生、梶原隆司、柳生数馬、吉澤俊介、 高橋敏男、田中悟、<u>小森文夫</u>、P. Krüger, J. Pollmann、SiC 上の結晶性シリカシ ートの STM 観察とそのバンドギャッ プ、日本物理学会第 69 回年次大会、 2014 年 3 月 27 日、東海大学(神奈川 県平塚市)。

H. Tochihara, T. Shirasawa, T. Suzuki, T. Miyamachi, T. Kajiwara, K. Yagyu, S. Yoshizawa, T. Takahashi, <u>F. Komori</u>, S. Tanaka, STM Studies of an Ultrathin Silica Film Epitaxially Formed on the C-Face of 4H-SiC Basal Planes, 12th International Conference on Atomically Controlled Surfaces, Interfaces and Nanostructures, 2013 年 11 月 5 日、つく ば国際会議場 (茨城県つくば市)。

〔図書〕(計0件)

〔産業財産権〕 出願状況(計0件)

名称: 発明者: 権利者: 種類:

番号: 出願年月日: 国内外の別: 取得状況(計0件) 名称: 発明者: 権利者: 種類: 番号: 出願年月日: 取得年月日: 国内外の別: [その他] ホームページ等 なし 6.研究組織 (1)研究代表者 栃原 浩(TOCHIHARA, Hiroshi) 福岡大学・工学部・研究員 研究者番号:80080472 (2)研究分担者 白澤 徹郎(SHIRASAWA, Tetsuroh) 東京大学・物性研究所・助教 研究者番号: 80451889 水野 清義 (MIZUNO, Seigi) 九州大学・総合理工学研究院・教授 研究者番号: 60229705 小森 文夫 (KOMORI, Fumio) 東京大学・物性研究所・教授 60170388 研究者番号: 鈴木 孝将 (SUZUKI, Takayuki) 福岡大学・工学部・教授 研究者番号: 10580178 (3)研究連携者 なし