科学研究費助成事業

研究成果報告書

平成 26 年 5月 23日現在

機関番号: 15401		
研究種目:基盤研究(C)		
研究期間: 2011 ~ 2013		
課題番号: 2 3 5 6 0 3 9 9		
研究課題名(和文)MOS構造を用いた表面プラズモン共鳴による光変調の研究		
研究課題名(英文)Study of optical modulation by surface plasmon resonance using MOS structure		
研究代表者		
田部井 哲夫(Tabei、Tetsuo)		
広島大学・ナノデバイス・バイオ融合科学研究所・特任助教		
研究者番号:4 0 5 3 6 1 2 4		
交付決定額(研究期間全体):(直接経費) 4,000,000 円 、(間接経費) 1,200,000 円		

研究成果の概要(和文):小型,高消光比,低消費電力であるLSI上光配線用シリコン光変調器の開発を目標として, 金属-酸化膜-半導体(MOS)構造を有し,度を制御するシリコン光変調器の実現可能性を理論,実験の両面から検討した 。表面プラズモンとは金属-誘電体界面に生じる電子の集団運動と電磁波の連成波である。数値解析から提案する素子 は数十umのサイズで高い消光比が得られることが分かった。また実際に素子を試作し,表面プラズモン共鳴によるもの と思われる光変調を確認した。

研究成果の概要(英文): In order to develop a silicon optical modulator with features as compact footprint, high extinction ratio and low power consumption, optical modulation based on surface plasmon resonance u sing metal-oxide-semiconductor (MOS) structure is verified by numerical analysis and experimental. A surfa ce plasmon is a coupling of electromagnetic wave and collective oscillation of electrons, generating at th e interface of metal and dielectric. From the numerical analysis, it is confirmed that the proposed optical modulator with sizes of a few tens of um has high extinction ratio. The proposed optical modulator is fa bricated actually, and the light modulation which seems to be due to surface plasmon resonance is confirmed.

研究分野:工学

科研費の分科・細目: 電気電子工学・電子デバイス・電子機器

キーワード:光変調器 シリコンフォトニクス 表面プラズモン

1. 研究開始当初の背景

大規模集積回路(Large Scale Integrated circuit, LSI)の処理能力はトランジスタの微 細化に伴い金属配線の信号伝達速度に支配 されるようになってきた。金属配線の信号遅 延や消費電力の増大はLSIの高性能化の妨げ になっており、その問題の解決策のひとつと して光配線LSIが提案されている。

電気信号を光信号に変換する光変調器は 光電子集積回路の重要な構成要素のひとつ であり,代表的な光変調器としてマッハツェ ンダー干渉計型やリング共振器型がある。マ ッハツェンダー干渉計型[1,2]は40Gbps以上 の高速変調が実現されているが,デバイスサ イズが数 mmに及ぶことや消費電力が大きい ことが欠点である。リング共振器型[3,4]はそ のサイズを数 um まで小型化することが可能 であるが,変調帯域幅が狭いことや温度依存 性が強いことなどの課題がある。LSI チップ 上光配線用の光変調器には微細な素子サイ ズ,高い消光比,低消費電力等の多くの要求 が課せられるが,これらの要求を全て要求す る光変調器はまだ無い。

- [1] A. Liu, et al., Nature 427, p. 615 (2004).
- [2] L. Liao, et al., Elect. Lett. 43, p. 1196 (2007).
- [3] Q. Xu, et al., Nature 435, p. 325 (2005).

[4] L. Chen, et al., Opt. Exp. 17, 15248 (2009).

2. 研究の目的

本研究ではLSI上光配線用の光変調器が満 足すべき要求を同時に満足する光変調器の 開発を目的として、マッハツェンダー干渉計 型やリング共振器型とは動作原理が異なる、 表面プラズモン共鳴による変調を検討する。

表面プラズモン共鳴は,外部から入射され た光によって金属-誘電体界面に電子の集団 振動と電磁波の連成波であるプラズモンモ ードが励起される現象である。金属-酸化膜-半導体 (Metal-Oxide-Semiconductor, MOS) 構 造にゲート電圧を印可した際に形成される 反転層(或いは蓄積層)は金属薄膜に類似し ているので,反転層-ゲート絶縁膜界面におい てプラズモンモードを励起できる可能性が ある。プラズモンモードを励起するために反 転層-ゲート絶縁膜界面に入射された光はエ ネルギーを失うため,その反射率は著しく低 下する。この現象を利用することにより、電 圧印可によって表面プラズモン共鳴を制御 して光変調を行うシリコン光変調器が期待 できる。本研究の目的は, MOS 構造を用いた 表面プラズモン共鳴による光変調の実現可 能性を検討することである。

3. 研究の方法

図1に本研究が対象とする光変調器の構造 を示す。この光変調器は絶縁膜上シリコン (Silicon on Insulator, SOI)を導波路コアとし, その周囲をゲート絶縁膜及びポリシリコン 電極で包んだ MOS 構造を持つ。図2に光変 調の原理を示す。デバイスに入射した光は SOI 内部で全反射を繰り返しながら進む。ポ リシリコン電極に電圧を印加すると反転層 あるいは蓄積層が形成され,特定の電圧にお いてゲート絶縁膜と反転層(または蓄積層) の境界面で表面プラズモンが発生すること が期待される。伝搬光は導波路内で何度も反 射を繰り返すので,表面プラズモン共鳴によ って反射率を少しでも低下させることが出 来れば出射光の強度は著しく低下する。

本研究では数値解析及びデバイスの試作 という理論・実験の両面から, MOS 構造を用 いた表面プラズモン共鳴による光変調の可 能性を検討する。

 MOS 構造における表面プラズモン共鳴 の数値解析

MOS 構造に電圧を印可した際に形成され る反転層あるいは蓄積層の比誘電率は、ドル ーデモデル

$$\varepsilon = \varepsilon_{\infty} - \frac{N_{\rm c} e^2}{m_{\rm c} \varepsilon_0 (\omega^2 + i\omega/\tau_{\rm c})} \tag{1}$$

図2 光変調の原理。ゲート電圧を印加すると反転層または蓄積層が現れる。これらの層は金属薄膜のように振舞うので、ある特定の電圧で表面プラズモン共鳴が起こり、伝搬光強度が減少する。

を用いて計算できる。ここで N_c , m_c , τ_c は それぞれ自由キャリヤの数密度,有効質量, 緩和時間である。 e 及び ω は電気素量及び 真空の誘電率, ε_{∞} は自由キャリヤ以外の分極 の寄与からなる比誘電率 ($\varepsilon_{\infty} = 11.7$), ω は光 の角振動数 ($\omega = 2\pi c/\lambda$, c 及び λ は光の速さ と波長), i は虚数単位である。屈折率 n は $n = \varepsilon^{1/2}$ で与えられる。

反転層または蓄積層の自由キャリヤ密度 は以下のように計算できる。n チャネル型 MOSの反転層のキャリヤ(電子)密度 m は $n_1 = (n_i^2/N_A) \cdot \exp(e\phi/k_BT)$ で与えられる。ここで n_i は真性キャリヤ密度, N_A は p 型シリコン 内のアクセプタ密度, ϕ_i は Si/SiO₂ 界面での 表面ポテンシャル, k_B はボルツマン定数, T は温度である。反転層の厚さは $-Q_1/en_1$ から計 算できる。ここで Q_1 は単位面積当たりの反 転層内の電子密度であり,強反転状態のとき

$$Q_{\rm I} = -\sqrt{2\varepsilon_{\rm Si}\varepsilon_0 k_{\rm B} T n_{\rm i}^2 / N_{\rm A}} \cdot e^{e\phi_{\rm s}/2k_{\rm B}T}$$
(2)

と計算される。電子の緩和時間 τ_c は有効質量 m_e 及び反転層内電子移動度 μ_{eff} から $\tau_c = m_e \mu_{eff} / e$ より計算できる。反転層内電子移動 度は文献[1]より $\mu_{eff} \approx 32500 E_{eff}^{-1/3}$ とした。 E_{eff} は実効垂直電界であり、空乏層内部の単位面 積当たりの電荷密度を Q_D として $E_{eff} = (|Q_D|+|Q_1|/2)/(\epsilon_{Si}\cdot\epsilon_0)$ で与えられる。

図1の光変調器の伝搬損失を定量的に評価 するため、以下の様な計算を行った。導波路 のコア・クラッド境界面における反射率が R のとき、導波路内で n 回反射した後の光強度 は入射光の強度を P₀、伝搬距離を z として

$$P_0 R^n = P_0 \exp\left[-n \ln\left(R^{-1}\right)\right]$$

= $P_0 \exp\left[-z \cdot \frac{n}{z} \cdot \ln\left(R^{-1}\right)\right] = P_0 \exp\left[-az\right]$ (3)

と書ける。ここで $(n/z) \ln(R^{-1}) = a$ とおいた。 1回の反射の間隔を L = z/n と置くと a は $a = L^{-1} \ln(R^{-1})$ と書ける。伝搬損失 α (dB/cm) は $\alpha = 10 \log 10[P(z)/P_0]/z = 10a/\ln 10$ で与えら れる。従ってコア・クラッド境界面での反射 率 R 及び反射の間隔 L を計算すれば、伝播損 失を算出できる。

導波路内を、全反射を繰り返しながら伝搬 する光の、コアからクラッドへの入射角 θ 及び反射間隔 L の算出には Marcatili 近似 [2]を用いた。Marcatili 近似では、伝播光の固 有モードは電界が x (垂直) 方向に主要成分 を持つ E_{pq} ^xモード (TM 的モード) とy(水平) 方向に主要成分を持つ E_{pq} ^yモード (TE 的モー ド) に分けられ、各固有モードは4つの平面 波の重ね合わせで表される。ここで p, q は 固有モードを区別する指標である。コア・ク ラッド境界面への入射角は平面波の波数ベ クトルから,反射間隔 L は波数ベクトル及 びエバネッセント波の浸入長から計算でき る。上記の数値解析にはウルフラムリサーチ 社 Mathematica を使用した。

- Y. Taur and T. H. Ning, *Fundamentals of* Modern VLSI Devices (Cambridge University Press, New York, 1998), p. 133.
- [2] E. A. J. Marcatili, Bell Syst. Tech. J. 48, p. 2071 (1969).
- (2) MOS キャパシタ・トランジスタ型表面プ ラズモン共鳴光変調器の試作

光変調素子の試作はナノデバイス・バイオ 融合科学研究所のスーパークリーンルーム を利用した。図3にその作製プロセスの概略 を示す。図3の光変調器の作製技術は従来の MOS トランジスタの作製技術と同じもので ある。図4に光学測定系の概略図を示す。

4. 研究成果

 MOS 構造における表面プラズモン共鳴の 数値解析 提案するデバイスの上面および側面のコ ア・クラッド境界面は図5に示す多層構造に なっている。各層の屈折率 n は波長 1.55µm の光に対する値である。SOI はボロンをドー プされた p型シリコンとし,簡単のため空乏 層は無視する。

図6に、電圧を印加した際に発生する反転 層または蓄積層の比誘電率の変化を示す。ゲート絶縁膜をSiO₂,その膜厚*T*ox を*T*ox = 5,10, 20とした。また簡単のためフラットバンド電 圧は 0Vとした。ゲート電圧が 0Vの時、比誘 電率はSiの比誘電率11.7であるが、ゲート 電圧を大きくしていくと比誘電率は減少し、 やがて負になる。金属薄膜の比誘電率が負に なることは表面プラズモン共鳴が起こるた めの条件の一つである。

図7はゲート絶縁膜をSiO₂(比誘電率 ϵ_{SiO2} = 3.9), Si₃N₄ (ϵ_{Si3N4} = 7.5), HfO₂ (ϵ_{HfO2} = 25) としたときの反転層の比誘電率である。高誘 電率のゲート絶縁膜を用いることによって, より低電圧での動作が期待できる。

図5の多層構造にSi側からTM 偏光波を入 射した時の反射率を図8に示す。ゲート絶縁 膜は厚さ5nmのSiO2膜とし、光の入射角を 75°,80°,85°とした。このゲート絶縁膜の条件

 図5 光変調器のコア・クラッド境界面の構造。n_{si} 等は波長1.55μmの光に対する屈折率を表す。

図9 提案する光変調器の E₁₁^y モードに対する伝播損失 のゲート電圧依存性。導波路の高さT を 300 nm に, 幅 W を 300, 500, 700, 1000 nm とした。

ではゲート電圧 6V 及び-4.4V 付近で光強度が 減少している。TE 偏光波の場合はこのよう な光強度の減少は確認されない。このことは, 光強度の減少が表面プラズモンによるもの であることを強く示唆している。

図9に光変調器の En^yモードに対する伝搬 損失のゲート電圧依存性を示す。ゲート絶縁 膜は SiO₂,厚さは 5nm である。導波路の断面 サイズが 1µm 以下になると伝搬損失が非常 に大きくなり、高さ,幅が共に 300nm の場合, 電圧 6V で伝搬損失は 3200dB/cm になる。こ れは長さ 30um の変調器では約 10dB の消光比 となる。以上の解析結果から表面プラズモン 共鳴を起こすためには導波路のサイズを高 さ,幅共に 1um 以下にすることが望ましい。 図1の光変調器の内部に形成される導波モ ードをより具体的に見るために,図 10 に示 すような多層構造のスラブ導波路の固有モ ードを計算した。ここではゲート絶縁膜を

SiO ₂	
Poly-Si	200 nm
Si ₃ N ₄	🗘 5 nm
Inversion layer	1.98 nm 🗘
Si	400 nm
Inversion layer	1.98 nm
Si ₃ N ₄	🗘 5 nm
Poly-Si	200 nm
SiO ₂	

図10 提案する光変調器の水平方向断面図。この 構造のスラブ導波路の導波モードを図11 に プロットした。

Si₃N₄とした。図 11 (a)はゲート電圧を印可し ない(反転層がない)場合,図 11 (b)はゲー ト電圧+3.65Vを印可した時のTM 偏光波の基 本モードである。ゲート電圧を印可した場合 は伝搬光が大きく減衰している。また,反転 層-ゲート絶縁膜界面では電界強度が強くな っており、このことは表面プラズモンが励起 されていると理解できる。一方で導波路コア 中央部でも電界強度は強く,プラズモンモー ドと絶縁体内の導波モードが混在したよう なモードになっているのが特徴である。

(2) MOS キャパシタ型表面プラズモン共鳴 光変調器の試作

図 12 に試作したコアの高さ 200nm,幅 850nm,デバイス長 100µm の光変調器の断面 SEM 像を示す。ゲート絶縁膜は SiO₂ であり, 厚さは 5nm である。

図 13 に試作デバイスの出射光強度のゲート電圧依存性を示す。入射光の波長は 1.5 µm である。図において、数回繰り返し測定した結果を灰色の線で、それらの平均を赤の線で示した。TM 偏光波を入射したとき、ゲート電圧+3.5 V(チャネルは反転状態)付近で光強度の減衰が見られる。消光比は約 0.3dB である。TE 偏光波の場合やゲート電圧を負にした場合は光の減衰は確認できなかった。また、TE 波、TM 波のいずれの場合もゲート電圧を大きくすると光強度が全体的に緩やかに減少する。これは反転層内の電子による自由キャリヤ吸収によるものと考えられる。

図12 試作したキャパシタ型光変調器の断面 SEM 像。

For TE polarized wave

これに平行して,作製したデバイスサイズ で数値解析を行ったところ,実験と同様に TM 波の反転状態で大きな光変調が見られた。 それゆえ図 13 の光強度の減少は表面プラズ モンによるものであることが示唆される。

(3) MOS トランジスタ型表面プラズモン共 鳴光変調器の試作

消光比及び動作電圧を改善するためにゲート絶縁膜を Si₃N₄にし,更に反転層移動度 等の物理パラメータを導出しやすいようト ランジスタ構造を持つ光変調器を試作した。 図 14 にその構造図を示す。MOS キャパシタ 型の光変調器の両側にソース及びドレイン としての拡散層を形成した。図 15 に試作し たデバイスの断面 SEM 像を示す。

図 16 に試作したトランジスタ型光変調器 の光変調特性を示す。ドレイン電圧が0及び

図16 試作した MOS トランジスタ型光変調器 の光強度のゲート電圧依存性。

1Vの時,ゲート電圧1.4V付近で出射光強度 が大きく低下している。消光比は最大で 1.5dBである。ドレイン電圧を大きくすると 出射光強度の低下は見られなくなる。この原 因は,ドレイン電圧増大によりピンチオフ点 が現れ,実効的チャネル長(反転層)が縮小 したためと考えることができる。

(4) まとめ

数値解析から,提案する光変調器は数十um のサイズで 10dB 程度の消光比が得られるこ とがわかった。また電圧駆動であるため低消 費電力である。実験においても消光比は小さ いが,表面プラズモン共鳴によるものと思わ れる光変調が確認できた。

5. 主な発表論文等

(研究代表者,研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計 1件)

<u>T. Tabei</u> and <u>S. Yokoyama</u>, "Proposal of a silicon optical modulator based on surface plasmon resonance," Proc. SPIE 8431, Silicon Photonics and Photonic Integrated Circuits III, 査読無し, 8431, 2012, 84311K-1 - 84311K-6, DOI: 10.1117/12.922864

- 〔学会発表〕(計 8件)
- <u>田部井哲夫</u>,<u>横山新</u>,テーパー構造を持 つ表面プラズモン共鳴型シリコン光変調 器,第61回応用物理学会春季学術講演会, 2014年3月17日,青山学院大学相模原 キャンパス
- ② 田部井哲夫,横山新,表面プラズモン共鳴をベースとした金属-絶縁膜-半導体トランジスタ型シリコン光変調器,第74回応用物理学会秋季学術講演会,2013年9月19日,同志社大学京田辺キャンパス
- ③ <u>T. Tabei</u> and <u>S. Yokoyama</u>, "Optical modulation based on surface plasmon resonance using metal-insulator-semiconductor structure," 2013 International Conference on Solid State Devices and Materials, September 26, 2013, Hilton Fukuoka Sea Hawk, Fukuoka.
- ④ <u>田部井哲夫</u>,<u>横山新</u>,表面プラズモン共 鳴型シリコン光変調器の改善,第60回応 用物理学会春季学術講演会,2013年3月 27日,神奈川工科大学
- ⑤ 田部井哲夫,横山新,MOS 構造を用いた 表面プラズモン共鳴をベースとするシリ コン光変調器,日本学術振興会光エレク トロニクス第130委員会,2012年12月6 日,東京理科大学森戸記念館
- ⑥ <u>田部井哲夫</u>,<u>横山新</u>,表面プラズモン共鳴をベースとしたシリコン光変調器の試作,第73回応用物理学会学術講演会,2012年9月12日,愛媛大学・松山大学
- ⑦ <u>T. Tabei</u> and <u>S. Yokoyama</u>, "Proposal of a silicon optical modulator based on surface plasmon resonance," SPIE Photonics Europe 2012, April 19, 2012, Brussels, Belgium.
- 8 <u>田部井哲夫</u>,<u>横山新</u>,表面プラズモン共鳴をベースとしたシリコン光変調器の提案,第 59 回応用物理学関係連合講演会,2012 年 3 月 18 日,早稲田大学
- 6. 研究組織
- (1)研究代表者 田部井 哲夫 (TABEI, Tetsuo)

広島大学・ナノデバイスバイオ融合科 学研究所・特任助教 研究者番号:40536124

(2)研究分担者

横山 新 (YOKOYAMA, Shin)
広島大学・ナノデバイスバイオ融合科
学研究所・教授
研究者番号: 80144880