科学研究費助成事業

研究成果報告書

科研費

平成 2 9 年 6 月 1 3 日現在

機関番号: 34407
研究種目: 基盤研究(C) (一般)
研究期間: 2011 ~ 2016
課題番号: 2 3 5 6 1 0 1 3
研究課題名(和文)マイクロチップによる同位体分離
研允課題名(央乂)Isotope Separation by Microchip

研究代表者

硲 隆太(Hazama, Ryuta)

大阪産業大学・人間環境学部・准教授

研究者番号:00379299

交付決定額(研究期間全体):(直接経費) 4,500,000円

研究成果の概要(和文):1987年のノーベル賞となったクラウンエーテル(CE)を用い、その溶媒抽出法がイオン の分離だけでなく同位体分離にも適用出来ることを実証した。逆抽出法では、これまでの化学法による濃縮の中 で最大の濃縮度(液液抽出3段目:LLE3で8%濃縮)の結果を得たが、Ca濃度は4段目以降は6桁落ちのため、多段 化は実質困難であった。そこで、Ca濃度を維持(約2~3割減)し、高価なCE有機相を水のみで再生し繰り返し使 用可能な新手法を開発した。このCa濃度(分配係数)と分離係数のトレードオフの関係は追認され、本新手法で の分離係数は、1.0010±0.0003と逆抽出法の1/10となったが多段化への障壁はクリアした。

研究成果の概要(英文): We proved that liquid-liquid extraction (LLE) with crown-ether which was awarded a Nobel prize in 1987, can be utilized not only for ion separation, but also for isotope separation. Previously it was found that multistage process of back extraction will be impractical, due to its Ca concentration reduction with the order of 6 after LLE's iteration of 4, even though the largest enrichment of 8 % was obtained at LLE's iteration of 3. Thus, we developed that the new procedure that a valuable crown-ether organic solution can be recycled by using just a water and its Ca concentration be maintained/kept with just a 20-30 % reduction, simultaneously. This trade-off relation between Ca concentration (partition coefficient) and separation factor was verified and its separation factor of this new method was found to be 1.0010 ± 0.0003 (about 1/10 compared with the back extraction) and we cleared these two obstacles (Ca concentration and separation factor) for a multistage process.

研究分野: 数物系科学

キーワード: 実験核物理 化学工学 同位体分離 マイクロ・ナノデバイス

1. 研究開始当初の背景

化学**合成リアクター**を擁するゲル微粒子 製造や抗がん剤製造用のデスクトップ化学 プラント等、コンパクトで生産性に優れ、前 者は 27 枚のマイクロチップで複雑な混合反 応精製が繰り返され高度な医療品が1ヶ月 で 10kg 生産され、後者はディスク状のチッ プに1500並列に集積され年産30トンに及び 広範な分野に飛躍的な進歩をもたらし、新し い学問分野の創成と新産業創出のシーズと なっている。

(1) ニュートリノ振動実験でニュートリ ノの種の間に質量差がある事が確実になっ た今、ニュートリノ質量(mv)の絶対値を測定 できる2重ベータ崩壊は最も重要な研究に位 置づけられ、ニュートリノを放出しない 0v2 重ベータ崩壊で唯一、宇宙の物質生成の鍵と なるレプトン数を破るマヨラナ粒子性も検 証出来る。当時、約 10kg の濃縮(86%)⁷⁶Ge を用いる HDM 実験(ハイデルベルグ・モス クワグループ)が世界最高感度の測定を達成 し質量の上限として0.33eVを与えているが、 その Q 値の低さ(2.0MeV)故、既に自然およ び人工放射性バックグランド(BG)が限界を 決め始め同じデータで0.4eVの質量を持つ報 告もあり否定的な見解が多い。48Caは2重べ ータ崩壊核の中で最大の Q 値(4.27 MeV)を 持ち、原理的に BG のない測定が可能で、BG の無い内は mvを1桁向上させるには物質量 を2桁増やせばよいがBGが見え始めると物 質量を4桁増やす必要があり、実質的に限界 がみえてくる。この意味で 48Ca は最善の原 子核である。今まで世界の研究の中心になっ てこなかった理由は

④自然存在比が少ない (0.187%) ために大量の原子核を用意し難い 点、B高分解能を達成した検出器が無かった 点の2点である。我々は基盤Aの研究で液体 シンチレータ中に CaF2 結晶を沈める方法で 検出器を製作し、上記2点の問題を克服した。 検出器は大型化が容易なので大量の物質を 用意できる。結晶 1000 個の CANDLESIV 計 画の場合、3.2 トン結晶中で 48Ca は約 3kg 使 用可能となる。これは既存の ELEGANTVI 実験による結果(約 7eV: Nucl. Phys. A730,215-223(2004))に対し、体積量が約440 倍に相当し、測定時間を 9 倍(5 年)、結晶純 度&波形測定による BG の低減(約 1.6 倍)と 合わせ、測定感度の 1√6000(~440×9× 1.6)=1/80の向上に対応する。BGの素性を理 解している CANDLES 計画ゆえにこれが可 能となる。この現在の自然同位体比をファク ター2倍さらに最大10倍に向上出来れば、 まさしく 0.1eV 以下の測定感度に直結し、装 置の大幅なコンパクト化が可能。

(2)トリチウム水の処理法のひとつとして、化学形態による規制値の大きな違いを利用する。分子状のトリチウムと同位体交換反応を利用して規制の厳しい HTOを HT ガスとして処理する。その際マイクロチップの通常攪拌の数百倍の反応率及び積層化パイル

アップの容易性の利点を生かせば非常に効率的であり、同位体分離で最も有効なガスによる遠心及び拡散分離が不可能な核融合に必要な水素やリチウムまたカルシウム等、様々な同位体分離にも応用出来る可能性がある。また、医療用小型サイクロトロンを用いた PET 薬剤製造でのサイクロトロン自体の放射化による、定期的部品交換時の従事者の被曝[特に重酸素濃縮水[18O]H₂O の pn 反応で[18F]-FDG を製造する際の放射性副生成物トリチウム生成]と廃棄物管理にもこの分離手法は極めて有用である。

2.研究の目的

(1) 我々は 1976 年に行われたカルシウ ムの液液抽出の方法("Separation of Calcium Isotopes with Macrocyclic Polyether Calcium Complexes", B.E.Jepson and R. Dewitt, J. Inorg. Nucl. Chem. 38,1175-1177(1976)) にヒントを得、クラウ ンエーテル(DC18C6)を用いた液液抽出を行 い、これまでの化学法による濃縮の中で最も よい分離係数 1.012~1.014 の結果を得た。 本結果は、これまで膨大な 40Ar+妨害イオン により<u>分離測定出来なかった</u> 40Ca を高知大 学海洋コア総合研究センターの Reaction cell-ICPMS を用い、アンモニアガスとの荷 電交換反応により、40Ar+を中性無害化し、 40Ca の同位体比測定に成功し初めて可能と なった。この結果、カルシウム同位体の中で 最大の自然存在比(約 97%)を持つ ⁴⁰Ca に対 し、確かに 48Ca が分離濃縮されていること を確認し、大量濃縮に向けて原理的な困難が ないことを世界で初めて示した。本研究では、 これら成果に基き、"トン"オーダーの大量 処理に向けた最適条件の確認(最適なクラウ ンエーテル・有機溶媒、マイクロリアクター の流路・流速、温度等)・多段濃縮プロセス を確立する。

(2)先行テスト(下表1)により、トリ チウム水の代わりにまず重水(室温)でテス トを行い、20mmの合流長(比界面積係数が 約80/cm)でも十分に重水での気液交換反 応が有効であることを確認し、重水の流速を 約17分の1に減速することにより、さらに 交換反応を1%から3%まで向上させるこ とに成功した。本テストにより判明した流速 への依存性、流路長、温度、触媒等の最適条 件の確認を実施し、トリチウム水で行う。一 方、現流速では、1ccのプロセスに各々、100 分から1日時間を要するため、チップ壁面の 親水疎水加工による2相流の多段化及びポ ンプの大容量化・最適化も行う。

表1 マイクロチップでの気(水素ガス)液 (重水)2層同位体交換反応の実験条件・結 果

213			
水素ガス	流速(cc/min)	2.3	2.3
重水	流速(µl/min)	9.65	0.57
重水濃度	反応前(%)	99.844	99.844
	反応後(%)	98.937	96.254
	- L.M.		

3.研究の方法

(1) 40Ca²⁺(水相) ➡ <u>48Ca</u>L²⁺(有機相) ⇔
 <u>48Ca</u>²⁺(水相) ➡ 40CaL²⁺(有機相): (L はクラウンエーテル)

 図1のマトリックス(矢印:優先順位、 安価及び取扱易・配管有機耐性良)の最適条
 件(クラウンエーテル、有機溶媒、温度)を
 決定。

図1 クラウンエーテル、有機溶媒、温度の 最適条件マトリックスの選択

先行、基盤研究(C): 平成19~22年度 により、<u>これまでの化学法による濃縮の中で</u> <u>最大の分離係数約 1.01 の結果を得</u>、上記、 マトリックスの各項目の有効性の端緒を得 た。

ー方、<u>標準的な</u>クラウンエーテル樹脂によ る固液抽出法では、分離係数が約1桁減及び 樹脂への吸着量が<u>少で高濃度塩酸も吸着の</u> ためには必須等の問題点が判明し、さらに大 量精製のためには非現実的なkm超の樹脂 カラム要でカラム長に応じた濃縮率も期待 値には及ばず、反応率及び反応速度で利点の あり、かつ安価でビル規模のプラントを下駄 箱サイズにダウンサイズししかも生産能力 は大型プラントをしのぐマクロでは実現出 来ないマイクロリアクターによるクラウン エーテルを直接用いる液液抽出2液層流装 置の重要性がよりクローズアップされる状 況となった。大量処理に於いて、固液抽出法 に比べ開発要素が多い反面、クラウンエーテ ルそのものに直接反応することから分離係 数及び反応速度の点で凌駕し、個液抽出(樹 脂)法では検証・実現不可能な様々なクラウ ンエーテル(クリプタンド、カリックスアレ ーン等)、平行向流・セグメント循環流等で の画期的な技術革新を検証出来、相補的であ る。

②DC18C6 (18-crown-6) 以外の、Ca イオン半径 によりフィットしたクラウンエーテル (特に クリプタンド 2.2.1、カリックスアレーン) でも液液抽出を行い、最適の大環状ポリエー テルを求める。

③同位体比測定は、精度・整合性の検証のた め、以下3施設の機器を利用。A.高知大学海 洋コア総合技術センター設置のアンモニア ガスを利用した Reaction-cell ICP-MS B. 京大原子炉の Multi-collectorの TIMS(TRITON) C.東工大・先導原子力研究 所TIMS(MAT261)。

(2)¹H³<u>H</u>(気)+¹H₂¹⁸0(液) <->¹H₂(気)+¹H³<u>H</u>¹⁸0(液)

・上記(1)と<u>同じ実験セットアップで、2</u> 相交換反応のチップ部分及び水素ガス入口 配管のみの交換で実験が可能。流速への依存 性、流路長、温度、触媒等の最適条件の確認 を実施し、トリチウム水で行う。一方、現流 速では、1ccのプロセスに各々、100分から1 日時間を要するため、ポンプをHPLC用の 大容量タイプ(数~数+m1/分:1ton/20日) (設備備品)で行う。

(3)(1)&(2)共、

・<u>マイクロセグメント循環流による多段濃縮</u> 及び濃度の向上に向けた開発

先行、基盤研究(C):平成19~22年度 により、エマルジョン形成用のマイクロチッ プを用いて有機相中に微細な水相の液滴を 形成させることで相互の液の接触面積を増 大させ、有機相中のクラウンエーテルと水相 からの Ca の接触確率を上昇させることで抽 出効率を上げることを行った。実際に、水相 と有機相をマイクロチップに通し混合した 後、静置分離(液液抽出)を6回繰り返し、 各回毎に水相に抽出された Ca の量を評価し マイクロチップによる抽出方法とバッチ法 とで抽出効率を比較した。Ca 量の分析には Thermo Scientific iCAP6500 (広島大学工学 研究院共同利用装置)を用いた。水相と有機 相の流量比は1:10としてマイクロチップ に流したが、エマルジョン形成用マイクロチ ップにおいては送液条件によってエマルジ ョン液滴の生成量やサイズが異なってくる。 液滴サイズが小さくなると2相の接触面積 は増大して抽出効率は向上すると予測され るが、一方で混合後の比重差によって分離す る工程において長時間を要するようになる。 今回は、静置分離時間を1時間とした。結果、 <u>マイクロチップ法ではバッチ法に比べ最大</u> <u>1 桁以上の Ca 濃度を達成し、抽出効率が向</u> 上することがわかった(下表2)。分離係数 と濃度は本来トレードオフの関係にあり、本 結果はマイクロチップの有効性を示す極め て重要な結果である。 濃縮工程の前半である液液抽出工程におい てマイクロリアクタが有効であることが確 認された。今後は後半の比較的時間を要した、

水相と有機相の静置・分離工程の迅速化方法 と自動化技術について検討を進める。

表2 マイクロリアクタ法とバッチ法の Ca 濃度比較

	Ca 濃度	(ppm)
ラウン	マイクロリアク	バッチ法
ド	タ法	
3回目	1.7165 ± 0.1028	0.5636 ± 0.0078
4回目	0.2882 ± 0.0254	0.0168 ± 0.0034
5回目	0.2571 ± 0.0182	0.0255 ± 0.0044

4. 研究成果

(1)A. これまでの化学法による濃縮の中で 最大の濃縮度(液液抽出3段目:LLE3 で8% 濃縮:図2)の結果を得、これは、DC18C6,ク ロロホルム 0.07M、常温、時間(撹拌・静置 1時間)の条件で得られた。同位体比測定は、 京大原子炉の Multi-collectorの TIMS(TRITON)を用いて実施。Caの質量数に応 じた濃縮度の線形性より同位体分離の質量 効果が確認された。

図 2 液液抽出 2 段目及び 3 段目での Ca 同 位体濃縮度(京大炉 TIMS による結果)

B. 上記、逆抽出法では、化学分離では最大 の分離係数:<u>1.012~1.014</u>を得た一方、Ca 濃度は4段目以降は6桁落ちのため、同位体 比はほぼ3段目までしか測定出来ず、多段化 は実質困難であった。そこで、図3及び図4 の新バッチ法での結果で示した通り、Ca 濃度 を維持(約2~3割減)しながら、しかも高 価な CE 有機相を水のみで再生し繰り返し使 用可能な新手法を開発した。ただ、従来から 指摘されていた Ca 濃度(分配係数・収率) と分離係数のトレードオフの関係は追認さ れ、本新手法での分離係数は、<u>1.0010</u>± 0.0003と逆抽出法の1/10となった。

図 3 Ca 水相 (CaCl₂) と CE 有機相 (DC18C6-CHCl₃)の液液抽出法。写真は左:磁 気スターラーによる攪拌、右:分液漏斗によ る整置・分離。<u>多段での Ca 濃度を確保した</u> まま(従来 6 桁 Ca 濃度落ちからわずか 2~3 割減)の新手法。水のみで Ca 剥がし高価な

<u>CE 有機相を再生し、繰り返し使用可能な新手</u>法を確立した。

図4 飽和 Ca 水溶液、DC18C6, クロロホルム 0.07M、常温、時間(撹拌・静置 30分)の条 件で、液液抽出6段目までバッチ法で濃縮を 行い、<u>分離係数1.0010±0.0003</u>を得た。同 位体比測定は、東工大・先導原子力研究所 TIMS (MAT261)を用いて実施。

多段濃縮に当り、既に基本的にクリアしな いといけない二大障壁(①Ca 濃度②分離係 数) はクリアし、この 1/10 の分離係数でも 2300 段で 10 倍濃縮に達し、マイクロリアク <u>ターでのパイルアップ法を用いれば、既に東</u> ソーが 3000 マイク<mark>ロチャンネルで年産 30 ト</mark> ンの薬剤ゲルを下駄箱サイズで製造してお り、十分大量精製が既に見込まれる成果を得 た。通常のバッチ法では、実験室レベルで達 成が見込まれても、大量精製のプラントレベ ルではそのままスケールアップが実現する とは限らないが、マイクロリアクターの利点 の一つである<u>パ</u>イルアップ法によりスケー ルアップが保証され、さらに、①大きな比界 面積②短い拡散距離から①' 高い反応率 早い反応速度の利点も期待され、 各々 ①"高分離係数による段数の低減②" 反応 時間の短縮の新たな向上も期待出来る。 (2) これまではトリチウム水の代替として 取扱い容易な重水を用いた密度測定により トリチウム除去の実証に成功し確認したが、 実際のトリチウム水を用いた実験を実施す るに当たり、測定・検出の困難なトリチウム 水の測定法の開発を以下鍵となる二つの要 件に於いて実施した。①電解濃縮装置による 微量トリチウム水の濃縮装置の開発②濃縮 前後の環境中微量トリチウム水を利用した 測定法の開発及び検出感度の向上。

①低濃度トリチウムを測定するためには、 試料水を電解濃縮してから測定する。旧来の 電解濃縮法では電解質を用い濃縮後の蒸留 が必要とされることや、電解された酸素と水 素が一緒に発生して爆発の危険が大きいこ となどの問題があった。これを解決するため に、固体電解質膜(solid polymer electrolyte)というイオンを通す高分子膜 を用い、電解質が不要で酸素と水素が別々に 発生する装置を採用した。この装置のもう一 つの大きな特徴は大電流を流せることであ る。固体電解質膜を用いると電気抵抗が小さ いので、膜面積1 cm²あたり1A程度で運転 できる。濃縮度は初期試料水量によって規定 されるが、10~20 倍のトリチウム濃度濃縮は 容易である。その装置の概念図を図5に示す。 また、電解操作前試料の不純物除去操作には 蒸留の代わりに逆浸透膜を用いて簡素化し た。

図5 電解濃縮装置概念図

②核融合研究所(名古屋大学医学部)より、 逆浸透膜濾過装置及び高圧液送ポンプの譲 渡を受け、環境水中のイオンを含むほとんど の物質を蒸留せずに容易に除去出来、トリチ ウム測定を簡素化出来る装置の整備を行った。

5. 主な発表論文等 (研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計 19 件)

- T. Iida, T.Kishimoto, <u>R. Hazama</u> (31 番目)et al. (計 34 人), "The CANDLES experiment for the study of Ca-48 double beta decay", Nuclear and Particle Physics Proceedings(査読無), 273-275, 2633-2635, 2016. <u>https://doi.org/10.1016/j.nuclphysbp</u> <u>s.2015.10.013</u>
- ② T. Iida, K. Nakajima, T. Kishimoto, <u>R. Hazama</u> (31 番目) et al."(計 34 人)," Status and future prospect of ⁴⁸Ca double beta decay search in CANDLES", J. Phys. Conf. Ser. (査読無), 718, 062026-1 ~ 5, 2016. doi:10.1088/1742-6596/718/6/062026
- ③ <u>R. Hazama</u>, <u>Y. Sakuma</u>, T. Yoshimoto, T. Fujii, T. Fukutani, Y. Shibahara, "Study of Isotope Separation of Strontium and Calcium via Chemical Exchange Reaction", KURRI Progress Report 2015(査読無), pp31, 2016. <u>http://www.rri.kyoto-u.ac.jp/PUB/report/PR/ProgRep2015/PR2015.pdf</u>
- ④ <u>硲隆太、佐久間洋一</u>、伊藤彩、藤井俊行、 福谷哲、芝原雄司, "ストロンチウム及

びカルシウムの化学交換法における同位 体分別研究II",京都大学原子炉実験所 「第50回学術講演会報文集」(査読無)、 KURRI-KR-207, pp53, 2016. <u>http://www.rri.kyoto-u.ac.jp/PUB/rep</u> <u>ort/04_kr/img/ekr001.pdf</u>

- ⑥ S. Umehara, T. Kishimoto, <u>R. Hazama</u> (38 番目)et al. (計 41 人), "Search for Neutirno-less Double Beta Decay with CANDLES", Physics Procedia (査読 無)61 283-288, 2015. DOI:10.1016/j.phpro.2014.12.046
- ⑦ <u>R. Hazama, Y. Sakuma</u>, A. Ito, T. Fujii, T. Fukutani, Y. Shibahara, "Study of Isotope Separation of Strontium and Calcium via Chemical Exchange Reaction", KURRI Progress Report 2014(査読無), pp61, 2015. <u>http://www.rri.kyoto-u.ac.jp/PUB/rep</u> <u>ort/PR/ProgRep2014/PR2014.pdf</u>
- ⑧ N. Suzuki, <u>R. Hazama(5番目)</u> et al. (計 28人), "New DAQ system for the CANDLES experiment", IEEE Transactions on Nuclear Science(査読有), 62, No.3, 1122-1127, 2015.
- DOI: 10.1109/TNS.2015.2423673

- S. Umehara, T. Kishimoto, <u>R. Hazama</u> (30 番目)et al.(計 32 人)," CANDLES: Search for neutrino-less double beta decay of ⁴⁸Ca", EPJ Web Conf (査読無). 66, 08008-1~4, 2014. <u>https://www.epj-conferences.org/arti</u> <u>cles/epjconf/pdf/2014/03/epjconf_inp</u> <u>c2013_08008.pdf</u>
- 12 <u>R. Hazama, Y. Sakuma</u>, A. Ito, T. Fujii, T. Fukutani, Y. Shibahara, "Isotope Separation by Microreactor", KURRI Progress Report 2013(査読無), pp84, 2014. http://www.rri.kyoto-u.ac.jp/PUB/rep

ort/PR/ProgRep2013/Project1.pdf

- (3) <u>裕隆太</u>、伊藤彩、<u>佐久間洋一</u>、藤井俊行、 福谷哲、芝原雄司,"クラウンエーテル による同位体分離",京都大学原子炉実 験所「第48回学術講演会報文集」(査読 無)、KURRI-KR-193, pp165-167, 2014. <u>http://www.rri.kyoto-u.ac.jp/PUB/rep</u> ort/04_kr_backnumber/193.html
- 磁隆太、濱崎竜英、野村雅夫、「マイクロ チップによる同位体分離」,大阪産業大 学産業研究所所報(査読無)、37, pp109-114, 2014. http://www.osaka-sandai.ac.jp/file/r s/research/archive/37/D b 3.pdf
- ⑤ S. Umehara, T. Kishimoto, <u>R. Hazama</u>(27 番目)et al.(計 29 人)," Search for neutrino-less double beta decay by CANDLES", AIP Conference Proceedings(査読無) 1553, 115-120, 2013.

http://dx.doi.org/10.1063/1.4806786

 <u>
 硲隆太、佐久間洋一、緒方良至、渡慶次</u> <u>
 学、三宅亮</u>、秋田誠広, "マイクロリア クターによる同位体分離",京都大学原 子炉実験所「第47回学術講演会報文集」 (査読無)、KURRI-KR-176, pp199-201, 2013.

http://www.rri.kyoto-u.ac.jp/PUB/rep ort/04_kr_backnumber/176.html

- ① I. Ogawa, T. Kishimoto, <u>R. Hazama</u> (14 番目)et al."(計 20 人)," Study of ⁴⁸Ca double beta decay by CANDLES", J. Phys. Conf. Ser. (査読無), 375, 042018-1~ 5, 2012. doi:10.1088/1742-6596/375/4/042018
- 18 <u>裕隆太、佐久間洋一、緒方良至、渡慶次</u>
 <u>学、三宅亮</u>、秋田誠広, "二重ベータ崩壊と同位体分離"同位体科学研究会(査 読無),第6・7号,1月,pp96,2012.
- ① T. Kishimoto, S. Yoshida, <u>R. Hazama</u>(19 番目)et al. (計 22 人)," Neutrino-less double beta decay of 48Ca -CANDLES-", AIP Conference Proceedings(査読無) 1388, 142-148, 2011. doi: 10.1063/1.3647363

〔学会発表〕(計 4 件)

- ② 磁隆太、佐久間洋一、伊藤彩、藤井俊行、 福谷哲、芝原雄司, "ストロンチウム及 びカルシウムの化学交換法における同位 体分別研究",第13回同位体科学研究会, 2015年3月5日,産業技術総合研究所, 臨海副都心センター,東京

- ③ <u>R. Hazama</u>, "Overview of detector technologies in low-radioactivity background experiments", The 4th joint meeting of the Nuclear Physics Divisions of APS and JPS (Hawaii2014), Hilton Waikoloa Village, Hawaii (USA), October 7-11, 2014
- ④ <u>硲 隆 太</u>、" Enrichment Review (Enrichment of 48Ca)",第1回極低バ ックグラウンド素粒子原子核研究懇談会, 富山市,2013年4月,東大宇宙線研、東 北大ニュートリノセンター、阪大 RCNP 主 催

[その他]

- ホームページ等
- CANDLES 宇宙物質の起源を探る二重ベータ 崩 壊 <u>http://www.rcnp.osaka-u.ac.jp/candle</u> s/
- ② 宇宙の歴史をひもとく地下素粒子原子核 研究 <u>http://www.lowbg.org/ugnd/</u>
- ③ International Workshop on "Double Beta Decay and Underground Science" <u>http://www.rcnp.osaka-u.ac.jp/dbd16</u>
- 6. 研究組織
- (1)研究代表者
 硲 隆太(HAZAMA RYUTA)
 大阪産業大学・人間環境学部・准教授
 研究者番号:00379299

(2)研究分担者

佐久間 洋一 (SAKUMA YOICHI)東京工業大学・先導原子力研究所・研究生研究者番号: 30133119

(3)連携研究者

緒方 良至 (OGATA YOSHIMUNE)
 名古屋大学・アイソトープ総合センター分館・准教授
 研究者番号: 70185502

(4)連携研究者

渡慶次 学(TOKESHI MANABU)
 北海道大学大学院工学研究院・教授
 研究者番号:60311437

(4)連携研究者

三宅 亮 (MIYAKE RYO)東京大学大学院工学系研究科・教授研究者番号:50417052