

科学研究費助成事業(学術研究助成基金助成金)研究成果報告書

平成25年 月 日現在

機関番号:17102 研究種目:挑戦的萌芽研究 研究期間:2011~2012 課題番号:23656053 研究課題名(和文) 中空微細構造光ファイバー分子光学変調器の開発

研究課題名(英文) Development of molecular optical modulator based on hollow-core microstructured optical fiber

研究代表者

財津 慎一(ZAITSU SHINICHI)
九州大学・大学院工学研究院・准教授
研究者番号:60423521

研究成果の概要(和文):

本研究では中空フォトニックバンドギャップ(HCP)ファイバーを用いたテラヘルツ帯周 波数での動作を目指した分子光変調器を作製し、その性能を評価した。新たに設計・構築 した耐圧性 HCP ファイバーセルに水素分子を封入し、高繰り返し超短パルスレーザーに よって、コヒーレント分子運動を励起した。この励起された分子を、連続発振レーザー光 でプローブし、本手法による分子光変調の実現可能性を評価した。分子光変調を実現する ためには、より大きな相互作用長が必要であることを明らかにした。

研究成果の概要(英文):

A molecular optical modulator operating at a frequency in the terahertz region based on a hollow-core photonic band gap (HCP) fiber was designed and its performance was evaluated. Pressurized hydrogen molecules were injected in the newly designed pressure-resistant HCP fiber cell and coherent molecular motions of them were excited by a highly repetitive ultrashort-pulse laser. The feasibility of molecular optical modulation by this scheme was evaluated by probing the coherent molecular motion using a continuous-wave laser. It is found that a longer fiber length is necessary for efficient interaction between molecules and a laser beam in the HCP fiber.

交付決定額

			(金額単位:円)
	直接経費	間接経費	合 計
交付決定額	3, 000, 000	900, 000	3, 900, 000

研究分野:工学

科研費の分科・細目:応用物理学·工学基礎・応用光学・量子光工学 キーワード:非線形光学

1. 研究開始当初の背景

光変調器とは、光の特性を周期的に変化 させるためのデバイスであり、高速光通信や 基礎科学の広い分野で利用されている。従来 の電気光学効果を利用した光変調器の変調 周波数は 10GHz 程度であり、最近報告され ているグラフェンを用いた最新の高速変調 器でも 100GTHz 程度が限界であった。

分子の振動・回転運動をコヒーレントに重

ね合わせた量子状態は「波束」として記述す ることができる。励起された量子波束は、巨 視的に見ると分極率の時間的な変化として 発現する。従って、この量子波束を光波と相 互作用させることによって、分子の運動周波 数での光波の位相・振幅を変調することがで きる。分子の運動周波数は、テラへルツ領域 に存在するので、この新しい原理を利用した 「分子光学変調器」は、これまでにない高周 波数領域での光波変調を実現する新しいデ バイスとして、多くの研究者の注目を集めて いる。

これまで分子のコヒーレントな運動を励 起するためには、分子の運動周期よりも短い 時間幅を有する超短パルス光(~30fs)が用い られてきた。また、その励起効率は励起パル ス光のエネルギーで決まるために、数 10µJ まで増幅されたパルス光を使用する必要が あった。これに対して、ナノ秒パルスによる 2波長励起法では、量子干渉効果の一種であ る Electromagnetically Induced Transparency を利用することによって、最大値近 くまでの分子コヒーレンス励起が実現され た。しかし、この手法においても励起光パル スエネルギーとしては、数 10mJ 以上が必要 であった。

2. 研究の目的

本研究提案では、このような分子光波変調 法を、より多くの種類の光源に対して適用可 能なデバイスを開発し、分子光波変調法の適 用範囲の飛躍的な増大を最終的な目標とし ている。これまでこの手法は、増幅された時 間幅 100 fs 程度の高エネルギー超短パルレ ーザーのみに適用され、その応用は極めて限 定されていた。本研究では、低パルスエネル ギーのモード同期レーザー、さらには、連続 発振レーザーに対して、コヒーレント分子運 動による光波変調を実現する。

本研究では、これまで実現されてきた分子 光波変調法を、光源の種類を選ばず適用可能 にするという目標を設定した。この目標を達 成するための本研究最大の新規性は、これま でに利用されてきた方法とは本質的に異な るアプローチを利用する点に存在する。その ためのキーとなるデバイスが「微細構造中空 光ファイバー」である。従来の手法が、自由 空間中に配置した分子群に対して励起光と の相互作用を誘起させるシンプルな方式で あったの対し、この新デバイスを利用すると、 フォトニックバンドギャップ構造に囲まれ たこれまでとは異なる相互作用場において、 分子コヒーレンスを励起することが可能と なる。

3. 研究の方法

[STEP I]中空微細構造ファイバーを用いた 分子光学変調デバイスの作製

本研究で構想する分子光変調器を実現す るためには、①微細構造光ファイバー中に10 気圧程度の気体分子を充填し、②その状態を 封じ切りで保持し、③ファイバーコアに励起 光源と高効率にカップリング可能なデバイ ス、が必要となる。この目的を達成するため に、本研究で作製する実験装置を図1に示す。 本装置の特徴は、ファイバーを保持するため の2重管構造を組み込んだフランジ付き容器に、結合効率の低下を抑制する厚さ1mmの 薄型サファイヤ窓を設置出来ること、及び、 ファイバー被覆と容器のシールを保証する ために、ガスクロマトグラフィーで利用され るベスペルフェラルを転用する点である。こ れらの工夫により、結合効率70%を超える分 子充填中空微細構造光ファイバーセルを構 築する。

図1. 中空微細構造光ファイバーセルの構成

[STEP Ⅱ]モード同期レーザーパルス光によ る分子コヒーレント運動の励起

分子コヒーレンスを生成させるためのタ ーゲット量子準位としては、水素(オルソ水 素:パラ水素=3:1)の回転準位を用いる。 この媒質を用いれば、オルソ水素(17.6 THz)、 および、パラ水素(10.6 THz)の回転周波数に 一致する周波数での光波変調を実現するこ とができる。気体水素を STEP I で完成させ たファイバーセルへ最大 10 気圧充填する。 こでは励起光源として、モード同期チタン サファイヤレーザー(既設、パルス幅: 30 fs、 中心波長: 800 nm)を用いる (図 2 参照)。こ の励起光源は、分子回転の1周期よりも時間 幅が短いために、分子運動は衝撃的(インパ ルシブ)に励起される。17.6THz、10.6THzの 2 種類の分子コヒーレンスを同時に励起する ことで、それらを重ね合わせた分子量子波束 を生成させる。

生成された量子波束は偏光ビームスプリ ッタによって結合された連続発振光(波長可 変連続発振チタンサファイヤレーザー: ラ イン幅:<100kHz、出力:~1W、波長範囲 700nm ~900nm)によってプローブする。このプロー ブ光の変化をマルチチャネル分光器、および 光スペクトラムアナライザによって測定す ることで、コヒーレント分子運動による光波 変調特性について評価を行う。

図 2. HC-PCB fiber での分子光波変調観測系

4. 研究成果

4.1 耐圧性ファイバーセルの設計

図 3. に耐圧性ファイバーセルを示す。HCP-ファイバーに圧力を印加し、HCP-ファイバー内に水素を充填させるために石英窓付きの耐圧性ファイバーセルを作製した。

図 3. 高耐圧 HCP ファイバーセル

この装置には、高圧下でHCP-ファイバーに レーザー光を高効率にカップリングさせる ための二つの特徴がある。ファイバーコアを 保持するために二重構造を組み込んだフラ ンジ付き容器に結合率低下を抑制する1 mm の薄型石英窓を設置した。また、ファイバー 接合部でのファイバー被覆と容器のシール を保証するために、ガスクロマトグラフィー で利用されるベスペルフェラルを使用した。 この二つの特徴により高効率でのレーザー 光カップリングを目指した。

この耐圧性ファイバーセルを一組作製し、 一方を入射部、他方を出射部とした。入射部 と出射部のファイバーセルを HCP-ファイバ ーにより接続し、入射部のファイバーセルを 真空にした後、出射部のファイバーセルから 水素を封入することにより、ファイバーセル 全体に圧力をかけたまま水素を充填させた。 図4に入射部の時間に対する圧力変化を示す。

図 4. 入射部の時間に対する圧力変化

出射部の水素圧は 125 kPa/h のペースで減少 していた。そのため 30 分ごとに出射部のセ ルの水素圧を 1000 kPa に保つように調整し た。入射部の水素圧は、20 kPa/h のペースで 増加していた。入射部の水素圧を 20 時間で 535 kPa まで上昇させることができた。この ままのペースで増加すると仮定すると、入射 部のセルを目的の 1000 kPa に保つためには 50 時間程度かかることになる。しかし、実際 は 2 つのセル間の圧力が減少すると圧力増 加率も低下すると考えられるので 50 時間以 上の時間がかかると予想される。現状では出 射部のセルからのリークがあるので圧力増 加率が抑制されていると考えられる。そのた め、ファイバーセル全体のリークを減少させ ることにより圧力増加率が増加すると考え られる。したがって、出射部のリークを抑え ることができれば圧力増加率が増加し、より 短時間でファイバーセル全体を 1000 kPa で 保持することができると考えられる。

4.2 フェムト秒レーザー光によるコヒー レント分子運動の励起

コヒーレント分子運動による分子光変調 を達成するために、分子運動の準位と同等の スペクトル帯域を有する超短パルス光を用 いた。そのための図5に実験の光学系を示す。

図 5. 実験光学系

この光学系では、1/2 波長板により直線偏光 の入射光の偏光面向きを連続的変化させて いる。ポラライザ(PBS 結晶)の前に 1/2 波 長板を置くことにより、単色の直線偏光レー ザー光を可変比率で分岐することができる。 1/2 波長板とポラライザを組み合わせるこ とにより、モード同期レーザー光の出力調整 を行った。また、1/4 波長板を用いることに より直線偏光を円偏光に変換させた。直線偏 光を円偏光に変換することにより、水素分子 運動のうち回転運動を励起させやすくして いる。対物レンズによりレーザー光を集光し HCP-ファイバーにカップリングさせた。対物 レンズによるレーザー光の集光は次の(1)式 による。

d = 4rfM²/(pD) (1) r:レーザーの波長(nm)、f:レンズの焦点距

離(mm)、D:入射ビーム径(mm)

この式によると入射レーザー光の内径 1.5 mm、 焦点距離 9.0 cm、20 倍の対物レンズを用い た場合の集光ビーム径は 6.3 μ mになる。こ れは HCP-ファイバーのコア径 8 μ mに対し十 分にカップリングできるビーム径である。

今回の実験ではレーザー光入射光側にフ ァイバーセルを設置せずにレーザー光出射 光側のみにファイバーセルを設置した。図 6 に入射光のスペクトルを、図7にHCP-ファイ バー中で水素分子と相互作用した後の、出射 光のスペクトルを示す。

入射レーザー光の出力が 980 mW に対し、 HCP-ファイバ出射レーザー光出力は 144 mW であった。ファイバー入射光に対するファイ バー出射光の割合は15%であった。入射光と 出射光でのスペクトル形状に関する大きな 変化は見られなかった。これは入射レーザー 光によって水素の分子運動が十分に引き起 こされていないことが原因だと考えられる。 この要因として、①入射側に耐圧セルを取り 付けることができなかったためコア中に十 分な水素分子を充填させることができなか った、②HCP-ファイバーの長さが短く相互作 用長が十分でなかった、③HCP-ファイバーへ の結合効率が小さかった、などが考えられる。 ①では入射部のファイバーのセルは完成し ているが、耐圧性ファイバーセルをつけた状 態での HCP-ファイバーとレーザー光のカッ プリングが困難であったため入射部のファ イバーセルをつけた状態でのカップリング は行っていない。カップリングが困難であっ た要因は、20 倍の対物レンズの焦点距離が 短い点にある。今回の実験ではHCP-ファイバ ーと対物レンズの距離が 4 mm ほどしかなか った。HCP-ファイバーに耐圧性ファイバーセ ルをつけた場合、対物レンズと HCP-ファイバ ーの距離は 1 cm 程度必要になるので焦点距 離の長い対物レンズを準備する必要がある。

②については現在使用している1mのファイ バーから 10 m 以上のファイバーを用いる。 これにより長い距離での分子と光波の相互 作用を実現することができる。ただし、光フ ァイバーを長くした場合伝送損失や郡速度 分散等の分散の影響が懸念される。しかし、 HCP-ファイバーを用いた場合 20 ~30 m 程度 の長さのファイバーを用いても光の伝送損 失や分散の影響が小さく、また光ファイバー の特性としてある程度の塑性は可能である。 ファイバーが折れない程度の塑性であれば 束にすることができ、実験スペースを確保す ることができる。③は①と同様に焦点距離の 長いレンズを用いるなどの工夫を行うこと で対処することができる。また、ファイバー を切断する際、切断面によって結合効率は大 きく変化する。そのため、ファイバー専用の カッターによりファイバーの切断を行う。今 後、これらの問題を解決することにより、 HCP-ファイバー中において十分に大きな水 素のコヒーレントな分子運動が誘起できる と期待される。

4.3 連続発振レーザーによるコヒーレン ト分子運動のプローブ

フェムト秒レーザー光によりコヒーレン ト分子運動を励起させて、CWレーザー光の位 相変調を観測した。図8に得られたスペクト ル波形を示す。

図 8. 連続発振光の被変調スペクトル

得られた波形からサイドバンドの発生は 確認できなかった。連続発振光が水素のコヒ ーレント分子運動により位相変調された場 合、水素の回転運動周波数(17.6 THz)だけ変 調される。周波数 825 nm のレーザー光を変 調した場合、短波長側(786 nm)にアンチスト ークス光、長波長側(866 nm)にストークス光 が発生する。今回の実験ではアンチストーク ス光、ストークス光どちらも確認できなかっ た。この要因は、発生したサイドバンドの出 力がスペクトルメーターの検出感度以下だ ったことが考えられる。サイドバンドを発生 させるためには、①HCP-ファイバーとレーザ ー光の結合効率を上昇させる、②HCP-ファイ バー中に高圧で水素を充填させる、③検出器 の感度を上げる、等の工夫を行う。①は励起 光のみを入射した場合と同様に焦点距離の 長い対物レンズやファイバカッターを利用 することにより達成できる。②は HCP-ファイ バーの両端にファイバーセルを取り付け水 素を充填させることにより達成できる。その ためには、出射部のファイバーセルでの水素 の漏れを抑制する必要がある。出射部の漏れ 検査はスヌープを吹きかけることや水素デ ィテクターにより行ったが、これらを用いて 検出できる限界が水素の流出量を上回って いる場合漏れが発生している場所を特定す ることができない。そのため、高感度なリー クディテクターを準備するなどして対処す る。 5. 主な発表論文等 (研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計 0 件)

〔学会発表〕(計 0 件)

〔図書〕(計0件)

〔産業財産権〕

○出願状況(計0件)

名称: 発明者:

権利者: 種類: 番号: 出願年月日: 国内外の別:

○取得状況(計0件)

名称: 発明者: 権利者: 種類: 番号: 日日: 国内外の別:

〔その他〕 ホームページ等 なし