

科学研究費助成事業(学術研究助成基金助成金)研究成果報告書

平成25年3月31日現在

機関番号:17102	-		
研究種目:挑戦的萌芽研究			
研究期間:2011~2012			
課題番号:23656574			
研究課題名(和文)	高温ガス炉を用いた核融合炉用トリチウム生産の検討		
研究課題名(英文)	Study on tritium production for fusion reactors using high-temperature gas-cooled reactor		
研究代表者			
松浦 秀明(MATSUURA HIDEAKI)			
九州大学・工学研究院・助教			
研究者番号:50238961			

研究成果の概要(和文):

高温ガス炉(安全性の高い次世代の核分裂炉として開発中)を用いた、初期核融合炉用トリ チウム生産法を提案した。実用炉として概念設計がなされている「高温ガス炉ガスタービン発 電システム(GTHTR300)(熱出力 600MW)」を想定した場合、トリチウム生産量は、装荷する リチウム化合物の装荷方法や運転シナリオに応じ、180日間の運転で 0.3~0.7 kg 程度と推定 された。高温ガス炉を用いたトリチウム生産法の有効性が示されると同時に、今後の技術的な 開発課題が示された。

研究成果の概要(英文):

Tritium production using the high-temperature gas-cooled reactor (which has been developed as a next generation fission reactor with high-level safety performance) for fusion reactors is proposed. When a "gas turbine high-temperature reactor of 300-MWe nominal capacity (GTHTR300) [600MWt]" is assumed, it is estimated that $0.3 \sim 0.7$ kg of tritium (depending on Li-compound loading patterns and reactor operation scenario) can be produced in 180-day operation. Efficiency of the high-temperature gas-cooled reactor as a tritium production device is found out and the technical issues to realize the system are specified.

交付決定額

			(金碩平位, 戶)
	直接経費	間接経費	合 計
交付決定額	1,700,000	510,000	2,210,000

研究分野:工学

科研費の分科・細目:総合工学・核融合学 キーワード:トリチウム生産、DT 核融合炉、高温ガス炉、実効増倍率、リチウム化合物

1. 研究開始当初の背景

将来の電力供給を目的として、内外で核融 合炉の研究開発が進められている。初代の核 融合炉には、低温運転(~10 keV)域で相対 的に大きな反応率係数を持つ、重水素ートリ チウム(DT)燃料の使用が想定されている。 重水素は、自然界に一定の割合で存在するが、 トリチウムは放射性核種であり、自然界に充 分な利用可能量は存在しない。3 GW 熱出力 の DT 核融合炉では、1 日あたり約 400 gの トリチウムを核燃焼させる必要がある。磁場 核融合炉では、トリチウムの燃焼率は高々 数%程度と考えられており、炉壁やトリチウ ム循環系における滞留分を含めると、施設内 のインベントリーは増大する。核融合炉で使 用するトリチウムは、核融合炉のブランケッ トにおいて、自前で生産するのが基本的な考 え方ではあるが、最初の炉の立ち上げ用トリ チウムは、核融合炉外で準備する必要がある。 現在までに、重水減速重水冷却(CANDU) 炉における中性子捕獲反応を利用したトリ チウム生産がおこなわれている。国際熱核融

(入病光告、四)

合実験炉(ITER)では、DT 核燃焼実験用の トリチウムは、ひとまず CANDU 炉で生産さ れたものが使用される見込みである。熱中性 子に対する D(n, γ)T 反応断面積は、核融合 ブランケットで利用される ⁶Li(n.α)T 反応断 面積と比較して約6桁小さく、重水炉を用い る方法では、多数の装置から長期間にわたる トリチウムの収集が必要となる。ITER 以降 の発電炉のために準備が必要なトリチウム の量は、おおよそ 20~30 kg (2.3~3 GWt) と推定されている [Y. Asaoka, et al., Fusion Technol., 30 (1996) 853., M. Nishikawa, et al., Fusion Eng. Des., 87 (2012) 466.]。現時 点で、このような大量のトリチウムを如何に して確保するかは明確にされておらず、今後 の計画遂行に際し、有効で実現性の高いトリ チウム供給シナリオが求められている。

高温ガス炉は、第4世代原子力システムの 有力候補のひとつとして位置づけられてい る。冷却材としてガスを選択したことにより、 発熱密度を低く抑える為の設計が施されて おり、有効炉心体積が大きくなる反面、燃料 近辺に核変換対象物質を装荷できる大きな 物理的スペースを提供できる。これに伴い濃 縮をおこなわずに天然存在比のまま必要な 量の 6Li を炉心に装荷できる可能性がある。 また、黒鉛・ヘリウムを用いた減速・冷却系 は、核的には不要な中性子の吸収が少なく、 化学的には Li 化合物及びトリチウムとの相 性が比較的によいという性質を併せ持つ。高 温ガス炉では、核分裂生成物の封じ込めに対 して高い性能を持つ被覆粒子燃料が標準的 に使用され、実績がある。生産されたトリチ ウムについては、炉内への拡散を極力抑え、 回収効率を高める必要があるが、Li 化合物を 被覆粒子形状にて炉心内に装荷することに より、生成したトリチウムを効率よく回収で きる可能性がある。

2. 研究の目的

本研究では、高温ガス炉において Li 化合物をカーネルとした被覆粒子を用いつつ、可燃性毒物(BP: burnable poison)としての¹⁰Bを⁶Li に置き換えることにより、余剰の中性子を用いたトリチウム生産法を提案する。

高温ガス炉のトリチウム生産性能を、まず は数値解析に基づいて評価する。数値解析を 通じて、高温ガス炉を用いたトリチウム生産 システムの実現可能性、実現のための技術的 検討・開発課題を炉心物理の観点から明確に することを目的とした。

研究の方法

数値解析に際して、実用炉としての概念設計がおこなわれている、「高温ガス炉ガスタービンシステム GTHTR300」 [e.g. 國富一彦,他,日本原子力学会和文論文誌,1 (2002)

352.]を想定し、実績のある炉心核計算コード を用いた数値解析を実行することにより、高 温ガス炉のトリチウム生産性能を調べた。

(1) 解析コードについて

連続エネルギー汎用中性子・光子輸送計算 モンテカルロコード(MVP)[Y. Nagaya, et al, JAERI 1348 (2005)]及び燃焼解析コー ド(MVP-BURN) [K. Okumura, et al., JAERI-Conf. 2003-006 (2003)]を使用した。 核データセットには、JENDL-3.3を用いた。 コードで用意されている燃焼チェーンには Li の燃焼は含まれていないため、6Li の反応 率(トリチウム生成率)は、MVP で得られた 中性子束を用いて、手動で計算した。計算に 際して、中性子束には、各燃焼ステップ間で 一定と仮定した。6Li(n,a)T反応で生成された トリチウムのβ崩壊は無視した。

(2) 炉心体系とリチウム装荷法について

中心部にリチウム化合物を充填した被覆 粒子(図1(a))、同被覆粒子をグラファイト ベースで焼結形成した、円柱状コンパクト (直径44 mm、高さ80 mm)を想定する(図 1(b))。被覆粒子の構造には、GTHTR300の 被覆燃料粒子に採用されている形状を想定 した。本研究では、6Liの濃縮はおこなわず、 天然存在比のままでの使用を前提とした。

図1(a)Li 被覆粒子及び(b)Li コンパクト

炉心内の六角柱状燃料体ブロック(高さ 1000 mm、燃料棒 57 本装荷)における全ての BP 穴に上記、円柱状コンパクトを装荷する (図 2)。

図2 (a)燃料ブロック及び(b)Li コンパ クト柱

六角柱状燃料体ブロックは、水平面内 90 体×垂直方向8段に配置される(図3)。熱出 力600 MW、燃料濃縮度14 wt%、各コンポー ネントの寸法、装荷数・位置、運転条件等は、 GTHTR300の概念設計に準じた。計算は、 全ての BP 及び制御棒を引き抜いた状態を想 定しておこなった。

図3 GTHTR300 炉心水平断面図

- 4. 研究成果
- (1) BP 孔のみにリチウム化合物を装荷した 場合の解析

GTHTR300の設計においては、全ての BP 孔に B4C を黒鉛焼結することで、可燃性毒物 としての ¹⁰B を装荷する仕様である。まずは、 BP 孔以外の炉心設計は、標準のものからで きるだけ変更せず、BP 孔に装荷される ¹⁰B を ⁶Li に置き換えることを想定して解析を行 った。但し、装荷方法は、図1に示した通り である。被覆粒子形状は、GTHTR300 で使 用される被覆燃料粒子と同じ仕様のものを 採用した。

Li 被覆粒子のカーネルに充填する Li 化合物としては、特に高温環境での安定性を考慮した場合、LiAlO₂が有力候補である。図4に、Li 化合物として LiAlO₂を想定した場合に対して、180日間の運転における実効増倍率及びトリチウム生産量の積算値を示す(参考までに Li₂TiO₃を想定した場合も示す)。

図4 180日運転における実効増倍率と トリチウム生産量

実効増倍率は安定して緩やかに減少し、180 日後に 1.15 程度となっている。また、LiAlO₂ を想定した場合、トリチウム生産量は約 0.3 kg(3GW 熱出力 [600 MWt×5台] に換算し た場合、年間約 3 kg) である。 (2) 炉心中心及び周辺領域にリチウム化合物 を追装荷した場合の解析

開発コスト・期間の観点からは、既存の設計をできるだけ変更しないことが望ましい。 BP 孔のみにLi化合物を装荷する方法が有効 と考えられる。Li化合物にLiAIO₂を選択した場合は、この方法でGTHTR300相当(600 MWt)1台に約3kgの⁶Liを炉心に装荷す ることが可能である。しかしながら、この方 法では、図4に示したとおり、180日後の実 効増倍率にまだ余裕がある。

GTHTR300(LiAlO₂を選択した場合)の 最大トリチウム生産性能を調べるために、BP 孔以外の領域への追装荷を想定した。具体的 には、(i)BP 孔のみへの装荷(図 4)に加えて、 (ii)BP 孔+外側反射体領域(ORB)、及び (iii)BP 孔+外側反射体領域(ORB)+内側反 射体領域(IRB)に、LiAlO₂被覆粒子を装荷し た場合に対して、180 日間の燃焼計算をおこ なった。図5に、Liを追装荷した内側、外側 の黒鉛ブロック位置を示す。

図5 BP 孔以外への Li 装荷領域

(ii)のケースでは、2160本の BP 孔に加えて、 288 体の外側黒鉛ブロックにそれぞれ 60本 の Li 棒を装荷した。この場合、炉心に約 19 kg の 6Li が装荷される。(iii)のケースでは、(b) のケースに加えて、さらに内側 96 体の黒鉛 ブロックに、それぞれ 6 本の Li 棒を追加装 荷する。この場合、6Li 装荷量は約 20 kg と なる。

図 6 BP 孔以外に Li を装荷した場合の 実効増倍率とトリチウム生産量

図6に、上記それぞれのケースに対する、 180日間の運転時の実効増倍率とトリチウム 生産量の積算値を示す。180日間の運転で生 成されるトリチウムの量は、それぞれのケースに対して、(i)約0.3kg、(ii)約0.6kg、及び(iii)約0.8kgである。LiAlO2のような。Liの密度の小さい化合物を選定した場合においても、炉心構成の変更により、十分な量のトリチウム生産が可能である。また、環状炉心の外側領域に。Liを敷き詰めることにより、反射体領域に滞留する余剰の中性子をトリチウムの生産に利用することができるようになり、高温ガス炉を用いたトリチウムの生産性能が高まることが示された。

(3) 運転シナリオに関して

以上の解析では、運転期間を180日間と定 めて、トリチウム生産量を評価した。実際に は、燃料交換のための炉の停止期間を考慮す る必要がある。一般に、運転期間を短くとれ ば、余剰反応度に余裕ができるため、6Liの 初期装荷量を増やすことができる(トリチウ ム生産量が増加する)。しかしながら、この 場合、燃料交換のための炉の停止回数が増し、 一定量のトリチウムを生産するための期間 が長期化する。

図7に燃料交換のための交換期間をパラ メータに取り、運転期間の関数として、年間 平均トリチウム生産量 [kg/年] (=運転期間 中の生産量[kg]/(運転期間 [day]+交換期間[day])×365[day/年])を示す。計算では、先の議論における、(iii)BP 孔+外側反射体領域+内側反射体領域に、LiAlO₂被覆粒子を装荷した炉心を想定した(燃料交換期間については、GTHTR300 において、燃料取り替えに要する期間が2週間とされていることを勘案して、20 日、30 日、40 日とした)。

図7 運転期間、燃料交換期間に対する トリチウム生産量

図より、各燃料交換期間に対して、最適な 運転期間が存在することがわかる。また、最 適な運転期間は、交換期間が長い程、長めに なる。例えば、交換期間を20日とした場合 は、180日程度の運転期間で年間トリチウム 生産量は最大となる。180日の運転を繰り返 す場合、年間平均トリチウム生産量は、およ そ1.4kg程度となる。

(4) 運転温度

運転期間中、生成されたトリチウムを封じ 込め、トリチウムの回収効率を上げるために は、減速材領域の温度を下げた運転が必要と なる可能性がある。減速材温度を変更して解 析をおこなったが、温度変更に対する、トリ チウム生産性能に大きな差異は見られなか った。6Liの中性子吸収断面積は235Uと同様 に素中性子域で大きな値を持つ。温度の変化 により中性子スペクトルが変化した場合に も、出力(単位時間あたりの核分裂反応数) を一定に保つように中性子束の絶対値を修 正した運転がおこなわれることになる。従っ て、6Liの反応率もほぼ一定値に保たれるも のと考えられる。

(5) 今後の検討方向と技術的課題

GTHTR300 (600 MWt)を想定した場合、 180 日間の運転で 0.3~0.7 kg 程度のトリチ ウム生産が可能であることが示された。ガス 炉以外の炉系(軽水炉、高速炉)では、出力 あたりの有効炉心体積は約数十分の一とな り、6Liの濃縮は避けらない。炉心内の全て の BP を 6Liで置き換えることは困難と考え られる。高温ガス炉では、濃縮することなく、 必要な量の 6Liを有効炉心域に装荷できる可 能性がある。トリチウム生産炉としての高温 ガス炉の有効性が示されると同時に、トリチ ウム生産量が Li 化合物の装荷方法に大きく 依存することも明確となった。

ー連の解析では、Li 化合物装荷用の被覆粒 子構造には、GTHTR300 で想定されている 被覆燃料粒子構造を仮定した。被覆粒子構造 をトリチウム生産用に最適化することで、BP 孔領域のみで、必要な量の 6Li を装荷できる 可能性もあり、システムの簡素化に繋がる。 今後、Li 装荷量を増やし、トリチウム封じ込 め・健全性を確保し、回収との整合性のある Li 装荷法の開発が必要である。又、¹⁰B を 6Li に置き換えることに伴う炉心核燃焼特性へ の影響の評価も重要である。高温工学試験研 究炉(HTTR)を使用した照射実験を通して、 その性能の総合的な確認が可能と思われる。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計6件)

(1) H. Nakaya, S. Kouch, <u>H. Matsuura</u>, <u>Y. Nakao</u>, <u>S. Shimakawa</u>, <u>M. Goto</u>, <u>S. Nakagawa</u>, <u>M. Nishikawa</u>, Study on Core Configuration of Gas-cooled Reactor as a Tritium Production Device for Fusion Reactor, Proc. 6th International Topical Meeting on High Temperature Reactor Technology, HTR2012-7-014 1-6 (2012). (査読有)

(2) <u>M. Nishikawa</u>, H. Yamasaki, H. Kashimura, S. Matsuda, Effect of outside tritium source on tritium balance of a D-T fusion reactor Original Research Article, Fusion Engineering and Design, Vol. 87, 466-470 (2012). (査読有)

(3) <u>H. Matsuura</u>, S. Kouchi, H. Nakaya, T. Yasumoto, <u>Y. Nakao</u>, <u>S. Shimakawa</u>, <u>M. Goto</u>, <u>S. Nakagawa</u>, <u>M. Nishikawa</u>, Performance of High-Temperature Gas-Cooled Reactor as a Tritium Production Device for Fusion Reactors, Nuclear Engineering and Design, Vol. 243, 95-101 (2012). (査読有)

(4) <u>H. Matsuura</u>, T. Yasumoto, S. Kouchi, H. Nakaya, <u>Y. Nakao</u>, <u>S. Shimakawa</u>, <u>M. Goto</u>, <u>S. Nakagawa</u>, <u>M. Nishikawa</u>, Study of Tritium Production for Fusion Reactors Using High-Temperature Gas-Cooled Reactors, Fusion Science and Technology, Vol. 61, 268-272 (2012). (査読無)

(5) S. Kouchi, <u>H. Matsuura</u>, H. Nakaya, <u>S. Shimakawa</u>, <u>Y. Nakao</u>, <u>M. Goto</u>, <u>S. Nakagawa</u>, <u>M. Nishikawa</u>, Performance of High Temperature Gas-Cooled Reactor as an Outer Tritium Source for Fusion Reactors, Proc. Plasma Conf. 2011, 24P115-P (2011). (査 読無)

(6) <u>M. Nishikawa</u>, H. Yamasaki, <u>H. Matsuura</u>, <u>Y. Nakao</u>, Effect of Outer Tritium Supply to Tritium Balance of a D-T Fusion Power Reactor, Proc. Plasma Conf. 2011, 24D10 (2011). (査読無)

〔学会発表〕(計16件)

(1) <u>松浦秀明</u>, 核融合炉用トリチウム製造装置としての高温ガス炉, 総合講演・報告1「高温ガス炉への期待と可能性」,日本原子力学会「2013 年春の年会」,近畿大学東大阪キャンパス (2013 年 3 月 26 日).

(2) 中屋裕行, 松浦秀明, <u>中尾安幸</u>, <u>島川聡司</u>, <u>後藤実</u>, <u>中川繁昭</u>, <u>西川正史</u>, 高温ガス炉を 用いたトリチウム製造の検討 –運転シナリ オの検討–,日本原子力学会「2013 年春の年 会」, 近畿大学東大阪キャンパス(2013 年 3 月 28 日).

(3)後藤実,中川繁昭,島川聡司,中屋裕行, 松浦秀明,中尾安幸,西川正史,高温ガス炉 を用いたトリチウム製造の検討 -工学的な 検討-,日本原子力学会「2013年春の年会」, 近畿大学(2013年3月28日). (4) 中屋裕行、<u>松浦秀明、中尾安幸、島川聡</u> 司、<u>後藤実、中川繁昭、西川正史</u>,核融合炉 用トリチウム生産のための高温ガス炉への Li 化合物の装荷法と最適な運転期間の検討, 日本原子力学会九州支部第 31 回研究発表講 演会,九州大学 (2012 年 12 月 1 日).

(5)中屋裕行,<u>松浦秀明</u>,<u>中尾安幸</u>,<u>島川聡</u> <u>司</u>,<u>後藤実</u>,<u>中川繁昭</u>,<u>西川正史</u>,高温ガ ス炉を用いた初期核融合炉用トリチウム生 産の検討-Li 化合物の装荷方法及び運転シ ナリオの最適化-,プラズマ・核融合学会 第 29 回年回,春日市グローバルプラザ, (2012年11月30日).

(6) H. Nakaya, S. Kouchi, <u>H. Matsuura, Y.</u> <u>Nakao, S. Shimakawa, M. Goto, S. Nakagawa,</u> <u>M. Nishikawa</u>, Study on Core Configuration of Gas-cooled Reactor as a Tritium Production Device for Fusion Reactor, 6th International Topical Meeting on High Temperature Reactor Technology, Tokyo (29 October, 2012).

(7) <u>H. Matsuura</u>, H. Nakaya, <u>Y. Nakao</u>, <u>S. Shimakawa</u>, <u>M. Goto</u>, <u>S. Nakagawa</u>, <u>M. Nishikawa</u>, Performance of gas-cooled reactor as a tritium production and continuous tritium recovery system for fusion reactors, 27th Symposium on Fusion Technology, Liége, Belgium (26 September, 2012).

(8) <u>松浦秀明</u>, 核融合炉用外部トリチウム供 給源としての HTGR の性能,「高温ガス炉を 用いたトリチウム生産」研究会、大洗 (2012 年7月6日).

(9) 中屋裕行,河内昌平,<u>松浦秀明</u>,<u>中尾安幸</u>, <u>島川聡司</u>,後藤実,<u>中川繁昭</u>,<u>西川正史</u>,高 温ガス炉を用いた初期核融合炉用トリチウ ム生産の検討-Li 化合物の炉心への装荷方法 の最適化-,第9回核融合エネルギー連合講演 会,神戸国際会議場(2012年6月28日).

(10) 河内昌平,<u>松浦秀明</u>,中屋裕行,<u>中尾</u> 安幸,島川聡司,後藤実,中川繁昭,西川 正史,核融合炉用外部トリチウム供給源と しての高温ガス炉の性能,日本原子力学会 九州支部「第 30 回研究発表講演会」、九州 大学春日キャンパス(2011年12月17日).

(11) <u>松浦秀明</u>,「原子炉を用いたトリチウム 生産の検討」,「ヘリカル動力炉システムの トリチウム安全性」「持続的燃料供給のため のトリチウム研究・技術開発」合同研究会, 核融合科学研究所(2011年12月7日). (12) S. Kouchi, <u>H. Matsuura</u>, H. Nakaya, <u>S. Shimakawa</u>, <u>Y. Nakao</u>, <u>M. Goto</u>, <u>S. Nakagawa</u>, <u>M. Nishikawa</u>, Performance of high temperature gas-cooled reactor as an outer tritium source for fusion reactors Plasma Conference (Kanazawa, 24 November, 2011).

(13) <u>M. Nishikawa</u>, H. Yamasaki, <u>H.</u> <u>Matsuura</u>, <u>Y. Nakao</u>, Effect of Outer Tritium Supply to Tritium Balance of a D-T Fusion Power Reactor, Plasma Conference (Kanazawa, 24 November, 2011).

(14) 松浦秀明,河内昌平,中屋裕行,安元 孝司、<u>中尾安幸,島川聡司,後藤実</u>,<u>中川繁</u> 昭,<u>西川正史</u>,「核融合炉用トリチウム生産 炉としての高温ガス炉の特性」、日本原子力 学会「2011 年秋の大会」,北九州国際会議場 (2011 年9月 20 日).

(15)河内昌平,<u>松浦秀明</u>,中屋裕行,安元 孝司、<u>中尾安幸</u>,<u>島川聡司</u>,<u>後藤実</u>,<u>中川繁</u> 昭,<u>西川正史</u>,「高温ガス炉における Li 制 御棒の利用とトリチウム生産性能」、日本原 子力学会「2011 年秋の大会」,北九州国際会 議場(2011 年 9 月 20 日).

(16) <u>H. Matsuura</u>, T. Yasumoto, S. Kouchi, H. Nakaya, <u>S. Shimakawa</u>, <u>Y. Nakao</u>, <u>M. Goto</u>, <u>S. Nakagawa</u>, <u>M. Nishikawa</u>, Study of Tritium Production for Fusion Reactors Using High-Temperature Gas-Cooled Reactors, 15th International Conference on Emerging Nuclear Energy Systems (San Francisco, USA, 18 May, 2011).

〔その他〕(関連する論文及び学会発表)

(1) H. Nakaya, S. Kouch, <u>S. Shimakawa, H.</u> <u>Matsuura</u>, <u>Y. Nakao</u>, <u>M. Goto</u>, <u>S. Nakagawa</u>, Study on Transmutation of Long-Lived Fission Product Using High-Temperature Gas-Cooled Reactors, Proc. of GLOBAL2011, 391363 1-5 (査読有).

(2) 久保光太郎,<u>松浦秀明</u>,田ノ内宏平, 中屋裕行,<u>中尾安幸,島川聡司,後藤実</u>, <u>中川繁昭</u>,マイナーアクチノイドに対する高 温ガス炉の核変換性能,日本原子力学会九州 支部第 31 回研究発表講演会,九州大学 (2012年12月1日).

(3)<u>島川聡司,後藤実,中川繁昭</u>,中屋裕 行,<u>松浦秀明</u>,<u>中尾安幸</u>,高温ガス炉を用 いた LLFP 核変換の検討;(1)特性,日本原子 力学会「2012 年秋の大会」,広島大学(2012 年9月 20日).

(4) 中屋裕行,<u>松浦秀明</u>,<u>中尾安幸</u>,<u>島川 聡司,後藤実</u>,深谷裕司,<u>中川繁昭</u>,高温 ガス炉を用いた LLFP 核変換の検討;(2) 評価,日本原子力学会「2012 年秋の大会」, 広島大学(2012 年 9 月 20 日).

(5) 中屋裕行,田ノ内宏平,<u>松浦秀明</u>,河 内昌平,<u>中尾安幸,島川聡司,後藤実,中</u> 川繁昭,長寿命核分裂生成物に対する高温 ガス炉の核変換性能,日本原子力学会九州支 部第 30 回研究発表講演会,九州大学春日キ ャンパス(2011年12月17日).

(6) H. Nakaya, S. Kouch, <u>S. Shimakawa</u>, <u>H.</u> <u>Matsuura</u>, <u>Y. Nakao</u>, <u>M. Goto</u>, <u>S. Nakagawa</u>, Study on Transmutation of Long-Lived Fission Product Using High-Temperature Gas-Cooled Reactors, Proc. of GLOBAL2011, 391363 1-5 (Makuhari, 14 December, 2011).

6. 研究組織

- 研究代表者 松浦 秀明(MATSUURA HIDEAKI) 九州大学・工学研究院・助教 研究者番号:50238961
- (2)研究分担者

中尾 安幸 (NAKAO YASUYUKI) 九州大学・工学研究院・教授 研究者番号:00164129

(3)連携研究者

西川 正史(NISHIKAWA MASABUMI) 九州大学・総合理工学研究院・特任教授 研究者番号:90026229

島川 聡司 (SHIMAKAWA SATOSHI) 日本原子力研究開発機構・原子力水素・熱 利用研究センター・研究副主幹 研究者番号:20414534

後藤 実(GOTO MINORU) 日本原子力研究開発機構・原子力水素・熱 利用研究センター・研究副主幹 研究者番号:60414546

中川 繁昭 (NAKAGAWA SHIGEAKI) 日本原子力研究開発機構・原子力水素・熱 利用研究センター・研究主幹 研究者番号:40414544

(4)研究協力者

安元 孝司 (YASUMOTO TAKASHI) 河内 昌平 (KOUCHI SYOHEI) 中屋 裕行 (NAKAYA HIROYUKI) 田ノ内 宏平 (TANOUCHI KOHEI) 久保 光太郎 (KUBO KOTARO) 川本 靖子 (KAWAMOTO YASUKO) (九州大学・工学部・エネルギー科学科、 九州大学・工学府・エネルギー量子工学 専攻・修士課程、学生として参加)