科学研究費助成事業(学術研究助成基金助成金)研究成果報告書

平成24年6月11日現在

機関番号:12605	j			
研究種目:挑戦的萌芽	研究			
研究期間:2011-2011				
課題番号:23656	600			
研究課題名(和文)	シリコンナノワイヤーの形成と高効率太陽電池への応用			
研究課題名(英文)	Fabrication of Silicon Nanowires and Application to High Efficiency Solar Cells			
研究代表者				
上迫 浩一 (KAMISAKO KOICHI)				
東京農工大学・大学院工学研究院・教授				
研究者番号:40092481				

研究成果の概要(和文):原子状水素(水素ラジカル)の反応性を利用する我々独自の技術を利 用して、シリコンナノワイヤーを製作し、それを新型太陽電池の製作に応用し、実用レベルの 変換効率を実現できる可能性を実証した。

研究成果の概要(英文): By using our original method which utilizes reactivity of atomic hydrogen, silicon nanowires were fabricated and applied to solar cells. As a result, the practical possibility of the cells was demonstrated.

交付決定額

(金額単位:円)

	直接経費	間接経費	合 計
交付決定額	3,000,000	900, 000	3, 900, 000

研究分野:工学

科研費の分科・細目:総合工学・エネルギー学

キーワード:シリコンナノワイヤー、太陽電池、VLS 法、原子状水素、水素ラジカル、セル変 換効率

1. 研究開始当初の背景

ナノテクノロジーの代表的な物質として、 フラーレン C60 の発見に始まり、更にカーボ ンナノチューブへの展開につながり、いろい ろな材料でナノチューブやナノワイヤーな どのナノ構造が実現できるようになり、応用 研究へと発展している。しかしながら、半導 体の代表的材料であるシリコンについては、 まだ研究例が少ない。シリコンナノワイヤー の応用の可能性に関して、2010 年春の応用物 理学会学術講演会で開催されたシンポジウ ム「2020~30 年代のナノエレクトロニクスデ バイスの本命を考える」において、シリコン ナノワイヤーを応用したデバイスが次世代 半導体技術の中核となると提唱されている。

我々は、これまでシリコン薄膜の構造制御 のため、原子状水素(水素ラジカル)を利用 した成膜法を提案してきたが、更には、この 手法がシリコンの結晶化や良好なエッチン グ作用を示すことも明らかにしてきた。この ように、原子状水素がいろいろな化学作用を 引き起こし、半導体プロセスとして利用でき ることを実証してきた。

その成果の延長として、原子状水素の反応 作用と同時に、インジウムなどの金属の触媒 効果を利用することにより、シリコンナノワ イヤー構造が容易に実現できることを発見 した。(<u>http://jstshingi.jp/abst/p/09/908/tuat2.pdf</u> 参照)

2. 研究の目的

上述の通り、これまでの独自の研究成果として、原子状水素(水素ラジカル)を利用した シリコンナノワイヤーの新しい形成法を提 案できたことから(米国特許取得 2010 年1 月)、本研究では、ナノワイヤーの構造制御 および物理的特性の評価を進め、高効率太陽 電池への応用を実証することを目的とする。

我々が発見した方法は、その特徴が原子状 水素の作用を有効に利用する点にある。しか しまだそのメカニズムは充分に明らかでは ない。そこでまず、原子状水素の生成条件を 広く変化させてナノワイヤー成長のメカニ ズムを明らかにする。次に各種金属の触媒効 果の違いを明らかにするため、ナノ構造への 影響について調べる。その結果に基づいて、 新型太陽電池の製作を行い、総合的に太陽電 池の高効率化の可能性を実証する。

3. 研究の方法

(1)ナノサイズ触媒体の作製および評価 ①ナノサイズ触媒体の形成

試料基板として単結晶シリコン(c-Si)、 多結晶シリコン(mc-Si)及びガラス基板を 使用する。各試料基板上に In、Sn、Auなど の金属または金属酸化物の薄膜を蒸着法ま たはスパッター法で形成する。ナノサイズ 形成のために、水素の高周波またはマイク ロ波励起プラズマにより形成された水素ラ ジカルを基板表面に照射し、蒸着された金 属材料をナノサイズ近くまで制御する。 ②ナノサイズ触媒体の特性評価

走査型電子顕微鏡(SEM)により、作製され た触媒体サイズの観察を行う。多結晶シリ コンの場合は、各結晶方向面におけるナノ サイズの構造を観察する。結晶方向に影響 ないガラス基板上でのナノサイズ触媒体と 比較を行う。金属酸化膜を用いて作製され たナノサイズ触媒体については、水素ラジ カル処理による時間、温度、水素ガス流量 による変化を、X線回折(XRD)などにより測 定する。

(2)シリコンナノワイヤーの作製及び評価 ①シリコンナノワイヤーの成長

上記の方法で作成した基板を用いて水素 のマイクロ波または高周波励起リモートプ ラズマにより、原料ガスのシラン(SiH₄)を 分解させ、ナノサイズの触媒体の作用を利 用して、シリコンナノワイヤーを成長させ る。

②シリコンナノワイヤーの構造と特性評価 作製されたシリコンナノワイヤーの構造 的特性および電気的特性を評価する。SEM により、SiH₄とH₂の割合、成長時間、成長 圧力、マイクロ波の出力などの形成条件の 変化によるシリコンナノワイヤーの長さと 太さの変化を評価する。XRD、EDX、TEM、SAED により、結晶構造を解析する。

③結果のまとめと考察

以上の結果より,基板の種類、シリコンナノ ワイヤーの成長条件、構造と特性の関係につい て分析し、成長過程について考察する。 (3)シリコンナノワイヤー太陽電池の製作

①太陽電池基板

太陽電池用基板として、単結晶シリコンおよ び多結晶シリコンを用いる。それぞれ、p型、 n型基板を用いる。抵抗率は、1~5Ω・cmとする。 ②裏面電界 (BSF) 層の形成

A1ペーストを用いて、裏面電極を印刷し、熱 アニールによりBSF層を形成する。 ③シリコンナノワイヤーの形成

上述の方法で、原料ガスSiH₄を用いて基板 上にシリコンナノワイヤーを成長させ、太 陽電池のpn接合を形成する。p型ナノワ イヤーの形成には、ドーピングガスとして B₂H₆を用いる。n型にはPH₃を用いる。ドー ピング濃度を変化させて抵抗率を調整する。 ④エミッター層の形成

良好なエミッター層を形成させるため、 800~850℃での熱アニールを行う。 ⑤表面電極の形成

Agペーストを用いて、印刷法により表面 電極を形成し、800~850℃で焼成を行う。 ⑥太陽電池の発電特性の評価

ソーラーシミュレータを用いて作製した 太陽電池の特性評価を行う。エレクトロル ミネッセンス(EL)による評価を導入する。 必要に応じて、反射防止膜の導入を検討し、 実施する。

以上の結果を解析し、高効率化のための 条件を考察し、これまでの実績(9.65%) 以上の変換効率を達成する。

4. 研究成果

以下で、本研究の主目的であるシリコンナ ノワイヤー太陽電池の製作に関する研究結果 を中心に述べる。本研究で製作した太陽電池 のモデル図を図1に示す。

Back contact(Al)

図1 製作した太陽電池モデル図

(1)シリコンナノワイヤー太陽電池のナノワ イヤー成長時間依存性

シリコンナノワイヤーの形状は成長時間に よって大きく変化する。そこでまずこのサブ テーマでは、シリコンナノワイヤーの成長時 間(1min~4min)によってナノワイヤーの形 状、反射率、太陽電池特性に表れる影響を調 べた。

① 実験方法

基板として2cm×2cmのp型単結晶Si基板を 用いた。種々の予備実験の結果、シリコンナ ノワイヤー形成のための金属触媒として、本 実験ではSnを用いることとした。はじめにSi 基板を超音波洗浄し、自然酸化膜を除去して Sn薄膜を2nm蒸着した。水素ラジカル処理によ るSn触媒形成条件は、H₂流量100sccm、チャン バー内圧力0.4Torr、マイクロ波出力40W、基 板温度400℃、処理時間1minとした。n型シリ コンナノワイヤー作製条件は、SiH₄流量 10sccm、H₂+PH₃ 流量200sccm、PH₃/(H₂+PH₃) 比5.0×10⁻⁵、チャンバー内圧力0.4Torr、マイ クロ波出力40W、基板温度400℃、成長時間1 ~4 minとした。シリコンナノワイヤーを形成 した基板は、800℃、30minの熱処理を行った。 その後、スクリーン印刷法を用いてAg電極ペ ースト とA1電極ペーストの印刷を行い、電極 焼成炉で電極焼成を行った。表面状態の観察 はSEM、表面反射率の測定は分光光度計、太陽 電池特性の評価はソーラーシミュレータを用 いて行った。

②結果と考察

各成長時間において、基板上に形成された シリコンナノワイヤーの SEM 画像を図2に示 す。時間が長くなるほど長さ、直径共に大き くなっており、これまで得られている時間変 化の実験結果と同様の傾向を示している。

図2 各成長時間におけるシリコンナノワイヤー の SEM 像

図3に各サンプルの基板表面の反射率測 定結果を示す。各サンプルにおいて反射率が 低減していることが確認された。シリコンナ ノワイヤーの長さ太さが増加していくにつ れて低減される波長が長波長側まで広がっ ていくことを示している。作製時間1minで は400nm以上の波長域において、大きな反射 率の低減は見られなかった。これはシリコン ナノワイヤーが成長していない基板表面部 分の割合が多くなることに起因していると 考えられる。成長時間2minでは600nm以上 の波長域において、反射率は低減しているも のの、波長が長くなるにつれて、徐々に反射 率が上昇していることが分かる。

さらに作製時間が 2~4min のグラフから、 反射率が低減されている波長領域が、成長時 間が長くなるにつれて長波長側へシフトし ていくことが分かる。これは、反射防止膜の 膜厚を厚くした場合のシミュレーション結 果と同様の傾向を示す。シリコンナノワイヤ ーは反射防止膜と似てはいるものの、短波長 において反射率の上昇がみられないことが 特徴である。

図3 各成長時間におけるシリコンナノワ イヤーの反射率

シリコンナノワイヤー作成長時間 1~4min のサンプルについて、太陽電池を作製して発 電特性を調べた。I-V カーブの測定結果を図 4に示す。

図4 シリコンナノワイヤーセルの I-V 特性

この結果から求めたセル特性の結果を表 1に示す。成長時間 1min のサンプルは太陽 電池特性が測定できなかった。このことから、 シリコンナノワイヤーが短過ぎると太陽電 池特性を得られないことが確認された。作製 時間 2~4min のサンプルにおいては、成長時 間 2min のサンプルのセル特性が最も良く、 10.4 %を達成した。これは、シリコンナノワ イヤーが短くなることによって、シリコンナ ノワイヤー中のキャリア再結合の確率が減 少し、電流として取り出せるキャリア数が増 加したことにより電流密度が増加したため と考えられる。また、シリコンナノワイヤー 自体の抵抗が減少したため直列抵抗が減少 し FF が向上したためと考えられる。

表1 シリコンナノワイヤーセルの特性パラメータ

成長時間 [min]	2	3	4
J _{sc} [mA/cm ²]	28.7	25.3	24.0
$V_{oc}[V]$	0.56	0.56	0.56
FF	0.64	0.53	0.43
Eff[%]	10.4	7.77	5.82

(2)シリコンナノワイヤー太陽電池の PH₃ 流 量依存性

前項において、シリコンナノワイヤーの成 長時間による形状変化、及び太陽電池化した 際の特性変化を調べたが、シリコンナノワイ ヤーを形成する際にドーピングガスとして 添加するホスフィン(PH₃)流量を変化させる ことによって、シリコンナノワイヤーへのド ーピング量や形状が変化が予想される。そこ で本実験では、PH₃流量を変化させることによ って Si 基板上に形成されるシリコンナノワ イヤーへの形状、表面反射率、さらにセル化 した際にセル特性がどのように変化するの かについて調べた。

①実験方法

前項(1)と同様のプロセスでシリコンナノ ワイヤーの形成及びセル化を行った。

シリコンナノワイヤー形成条件は、SiH₄流 量 10 sccm、H₂+PH₃ 流量 200sccm、PH₃/(H₂+PH₃) 比 2.5×10⁻⁵ ~ 3.5×10⁻⁴、チャンバー内圧力 0.4Torr、マイクロ波出力 40W、基板温度 400°C、 成長時間 3min とした。シリコンナノワイヤ ー形成後加熱処理を行い、電極としてスクリ ーン印刷法を用いてAg とA1の印刷を行った 後、電極焼成炉で焼成を行った。

②結果と考察

図5に各PH₃流量においてシリコン基板上 に形成されたシリコンナノワイヤーのSEM像 (結果の一部)を示す。PH₃流量によってワイ ヤー形状にわずかな違いが見られた。シリコ ンナノワイヤーの長さと直径の平均値を測 った結果、長さは流量が増加するに従い少し ずつ短くなった。直径においては顕著な傾向 は見られなかった。PH₃流量が増加するに従い シリコンナノワイヤーの形が直線的でなく、 湾曲し変形してきている。これはPH₃の増加 とともにシリコンナノワイヤーの直線的な 成長を妨げていると考えられる。

各 PH₃流量における基板表面の反射率を測 定した結果を図6に示す。すべての条件にお いて反射率は広い波長領域で5%以下に低減 されており、シリコンナノワイヤーに光閉じ 込め効果があることが確認できる。PH₃流量が 増加するに従い、800nm以上の長波長領域に おいて反射率が上昇しているものの、約5% 程度である。長600nmに注目するとPH₃流量 が5sccmの条件で最も反射率が低減されてい る。ナノワイヤーの形状により、低減される 波長が変化していると考えられる。

図5 各 PH₃流量においてシリコン基板上に 形成されたシリコンナノワイヤーの SEM 像

各 PH₃流量においてシリコンナノワイヤー を形成した基板をセル化して測定した電流-電圧特性の結果を図7に示す。また、この結 果から求めた短絡電流 J_{sc} (mA/cm²)、開放電 圧 (mV)、FF、変換効率(%)の値を表2に示す。 すべてのサンプルが太陽電池として機能す ることが確認でき、12.1%の効率を実証でき た。開放電圧に注目すると、ドーピング量が 10~40sccmでは、0.595 V付近で飽和傾向を 示すが、5sccmと50sccmで開放電圧の減少が みられた。これはドーピング量の pn 接合特 性への影響によると推測できる。 図8にEL画像の観察結果を示す。PH₃流量 が5~40sccmでは増加するに従い明るい部分、 すなわち良好なpn接合部分が増加している。 しかし、50sccmにおいては良好なpn接合部 が減少している。

図7 各 PH₃流量におけるシリコンナノ ワイヤー太陽電池の I-V 特性

表2 各 PH。流量におけるシリコンナノワイヤー 太陽電池のセルパラメーター

PH ₃ [sccm]	J_{SC} [mA/cm ²]	Voc [V]	\mathbf{FF}	Efficiency [%]
5	29.2	0.557	0.593	9.65
10	30.1	0.598	0.613	11.0
15	29.8	0.598	0.624	11.1
20	29.8	0.599	0.664	11.9
30	29.5	0.594	0.681	11.9
40	29.5	0.595	0.688	12.1
50	29.8	0.565	0.657	11.1

これらの結果から、PH。流量はシリコンナノ ワイヤーの形状制御に密接に関わっており、 その形状は光閉じ込め効果や、太陽電池特性 にも影響を与えることが確認できた。そして、 反射率 5%程度以下であれば効率変化の大き な要因にはならい。むしろ、pn 接合や、電極 形成に影響が表れると考えられる。 (3)まとめ

以上の研究結果から、シリコンナノワイヤ ーの太陽電池への応用の可能性を実証する ことができた。セル構造の最適化、及び発電 の詳細なメカニズムについて、今後さらなる 解析が必要である。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計1件)

① Yuki Nemoto, Marwan Dhamrin, <u>Koichi</u> <u>Kamisako</u>, Silicon Nanowires for Screen-Printed Solar Cell Application, Proc. EUPVSEC、査読無、2011、474-477

〔学会発表〕(計1件)

- 根本勇樹、結晶シリコン基板を用いたシ リコンナノワイヤー太陽電池の作製、第 8回次世代の太陽光発電システムシンポ ジウム(学振175委員会)、2011年6月 30日、じゅうろくプラザ(岐阜市)
- 6. 研究組織
- (1)研究代表者 上迫 浩一(KAMISAK0 KOICHI) 東京農工大学・大学院工学研究院・教授 研究者番号:40092481
 (2)研究分担者 なし
 (3)連携研究者
 - 須田 正則(SUDA MASANORI)東京農工大学・大学院工学府・技術職員研究者番号:20422503