科学研究費助成事業

研究成果報告書

平成 2 6 年 6 月 5 日現在

機関番号: 14401 研究種目: 若手研究(A) 研究期間: 2011~2013 課題番号: 23686025 研究課題名(和文)ナノ構造界面の時間依存型変形と破壊

研究課題名(英文)Time-dependent deformation and fracture at interfaces of nanostructures

研究代表者

平方 寬之(Hirakata, Hiroyuki)

大阪大学・工学(系)研究科(研究院)・准教授

研究者番号:40362454

交付決定額(研究期間全体):(直接経費) 20,900,000円、(間接経費) 6,270,000円

研究成果の概要(和文):本研究では、10 nm オーダーの金属ナノ構造体の界面を対象として、時間依存変形であるク リープによる界面破壊の支配力学を明らかにすることを目的として、斜め蒸着法によりSi基板上に成長させたTi傾斜ナ ノコラムに対するクリープ実験を行った。Tiナノコラムは、室温下においてクリープ変形し、Si基板との界面で破壊し た。実験結果を基にTiナノコラムのクリープを考慮した応力解析を実施した。同様の破断寿命であった応力特異性が異 なる2種類の試験片で、破壊が生じた界面端近傍の5 nmの領域で応力場の強さが良く一致した。このことは、ナノスケ ールの局所応力場がクリープ界面破壊を支配することを示唆している。

研究成果の概要(英文): The dominant mechanics of creep fracture at interfaces on the nanoscale was evalua ted on the basis of creep experiments conducted at room temperature on Ti oblique nanocolumns grown on a S i substrate using glancing angle deposition. The specimens deformed in a time-dependent manner under a con stant applied force, and then the Ti nanocolumns fractured at the interface. The local stress distribution along the Ti/Si interface during the creep experiments was analyzed while giving due consideration to the creep of the Ti nanocolumn. The stresses near the interface edge in the region of about 5 nm were very cl ose in the two types of specimens with similar fracture lives although they had different singularities at the edge. This suggested that the creep interfacial fracture was dominated by the local stress field in t he nanoscale region.

研究分野:工学

科研費の分科・細目: 機械材料・材料力学

キーワード:マイクロ材料力学 ナノ構造 クリープ 界面 破壊

1. 研究開始当初の背景

先端電子デバイスやナノ電子機械システム(NEMS)は、多彩な機能を実現するため 物理的性質の異なる多種の材料から構成されている。異種材料の組み合わせによって生じる界面は、応力集中が生じるため、優先的に破壊が進行する箇所である。研究代表者はこれまでに、時間に依存しない弾塑性変形を伴うナノ材料の界面強度について、体系的な研究を行ってきた。とくに、マクロな材料について妥当性が検討されてきた連続体力学およびそれに基づく界面端部やき裂先端近傍の応力特異場の強さに着目した破壊力学の寸法的適用限界について検討し、ナノ領域の応力特異場が支配する界面破壊の力学的クライテリオンを明らかにしてきた。

一方、構成要素としての金属の使用や、高 温下に晒されるデバイスの使用環境を勘案 すると、上記クライテリオンよりもはるかに 低い応力下においても、原子拡散に起因する 時間依存型変形(クリープ)が生じ、破壊に 至ることが大きな問題である。このため、長 期にわたって高い強度・信頼性を確保するに は、ナノ材料のクリープ、およびそれに起因 する界面破壊に関する基礎的な理解が不可 欠である。

ナノ材料の特筆すべき構造的特徴は、寸法 の縮小に伴い表面や界面の影響が支配的に なることである。原子拡散が支配する時間依 存型変形では、高速拡散路である表面や界面 の割合が増加することによってクリープ速 度が加速することが予測される。ところが、 ナノ構造体界面の時間依存型破壊に関する 研究は、国内外ともに稀少であった。

2. 研究の目的

本研究では、次世代ナノデバイスの中核を 担う寸法が 10 nm オーダーの金属ナノ構造体 の界面を対象として、(1) クリープ界面強 度実験法を開発するとともに、(2) 変形・ 破壊機構の解明を通じてクリープ界面破壊 の支配力学を明らかにすることを目的とす る。

3. 研究の方法

(1) 供試材

図1に、供試材の断面 FESEM 像を示す。 供試材は、Si 基板、Ti 傾斜ナノコラム(高さ $h = 439 \pm 10$ nm)、および Ti 均質薄膜から構成されており、Ti ナノコラムと Si 基板の界面 が評価対象である。Ti ナノコラムと基板の界 面部の寸法は約 40 nm であり、Ti ナノコラム の基板法線からの傾斜角は約 48°である。Ti 均質薄膜層は、後述する強度試験における負 荷伝達のためのものである。Ti ナノコラムお よび均質薄膜の作製は、電子ビーム蒸着によって行った。蒸着角(基板法線方向からの角 度) $\alpha = 85^\circ$ からの斜め蒸着によってナノ傾斜 コラムを作製したのち、蒸着角を $\alpha = 0^\circ$ に変 化させ、Ti 均質薄膜を製膜した。

(b) ナノコラム/基板界面近傍拡大図

図1 供試材の FESEM 像

図2 界面強度評価試験方法

図3 順方向試験片と逆方向試験片

(2) 実験方法

図2に、界面強度試験の概要を示す。基板、 ナノコラム層、および均質薄膜の3層からな るサンドイッチ型の微小試験片を FIB 加工に よって作製する。均質薄膜層の上面にダイヤ モンド圧子を用いて下方へ負荷を与えるこ とによって、ナノコラムと基板の界面にはく 離駆動力を負荷する。図3に示すように、ナ ノコラムは基板法線に対して傾斜した構造 を有しており、負荷方向によって高い引張応 力が生じる側の界面端角度($\theta_{\rm r}$)が異なるた め、界面端に生じる応力特異性(応力拡大) が異なる。そこで、要素の傾斜方向に対する 負荷方向を変えた強度試験を実施すること により、ナノスケールの局所応力が実際に破 壊を支配するかどうかを検討することがで きる。コラムの傾斜方向と負荷方向が同じで ある試験片を順方向試験片(図 3(a))、逆であ る試験片を逆方向試験片(図 3(b))と称する。 図2中に示した試験片寸法Wは2.4~2.7 um、 *H*は1.6~2.3 µm である。

試験には、原子間力顕微鏡に圧子に作用す る垂直・水平方向の微小荷重(F_N, F_L)およ び変位(δ_N, δ_L)の測定・制御が可能な力学試 験装置(Hysitron 社製 TriboScope)を取り付 けた試験システムを用いた。圧子には、頂角 60°および先端曲率半径約1μmのダイヤモン ド円錐圧子を用いた。試験は室温下で実施し た。ナノスケールの変形を精密に評価するに は、熱ドリフトの影響を極力小さくすること が不可欠である。そこで、試験装置全体を、 精密空調機を用いた恒温ブース内に設置す るとともに、試験片近傍部を断熱チャンバー で囲うことにより、試験中の試験片近傍の温 度変化が±0.015 K以内となるように制御した。 まず、負荷速度一定 $(dF_N/dt = 50 \mu N/s)$ の単 調増加荷重下における試験を実施し、非時間 依存型破壊における破断荷重を評価した。そ の後、一定荷重下における時間依存型破壊試 験を以下の手順で実施した。まず、垂直荷重 F_Nを上記破断荷重の 67% ~ 95%である設定 荷重まで負荷速度一定 $(dF_N/dt = 50 \mu N/s)$ で 増加させた。その後、 F_N を一定に制御し、垂 直変位 (δ_N) の時間変化を評価した。なお、 全ての試験において、水平方向の変位を拘束 $(\delta_{\rm L}=0)$ lt.

4. 研究成果

(1) 単調増加荷重に対する強度

順方向と逆方向試験片ともに、荷重の増加 に伴い変位がほぼ線形に増加した後、荷重-変位関係に傾きが低下する非線形性が見ら れた。その後、TiナノコラムとSi基板の界面 で破壊した。破断荷重を試験片の見かけの界 面部面積($W \times H$)で除した破壊公称せん断応 力 $\tau_{\rm C} = F_{\rm NC}/WH$ は,順方向で77.2 ± 7.6 MPa (5本),逆方向で26.3 ± 4.7 MPa (4本)とな り、順方向が逆方向の約3倍となった。これ は、単調増加荷重に対する界面破壊では、界 面端部の応力特異性の高い逆方向の試験片 のほうが、低い荷重であっても界面端部には 高い応力が生じるためである。

(2) クリープ界面破壊試験

図4に、単調増加荷重試験における破壊荷 重の約 79% ($F_{\rm N}$ = 313 μ N: $\tau_{\rm ap}$ = $F_{\rm N}/WH$ = 61.2 MPa)の大きさの一定荷重を負荷した順方向 試験片における変位 δ_N と時間 tの関係を示す。 図には、白金抵抗体を用いて測定した試験片 近傍の温度 Tを併せて示す。試験中の温度変 化量は±0.01 K 以下であり、別途実施した検 討によりこの程度の温度変化による熱ドリ フトは試験中の変位に比べてほぼ無視でき る水準であることを確認している。変位δ_Nは 試験開始からの時間 t = 6.3 s において設定荷 重(F_N=313 μN)に到達し、このときの変位 δ_N は 40.4 nm であった。その後、荷重 F_N が ほぼ一定であるにもかかわらず、変位δ_Nが時 間の経過とともに増加する時間依存型の変 形が見られた。時間 t = 0.2 ks あたりまで、変 位速度が減少する遷移クリープに類似の挙 動が見られ、それ以降t = 1.66 ks あたりまで、 変位速度がほぼ一定の定常クリープ域が見 られた。その後、変位速度は加速し、t=1.67 ks において試験片が破断した。試験前後の FESEM 観察像を図5に示す。大部分のTiナ ノコラムは Si 基板との界面もしくはその極 近傍で破壊していた。他の負荷荷重および逆 方向の試験片においても定性的に同様な挙 動を示した。

図5 試験前後の FESEM 観察像

図 6 に破断寿命 t_Fと公称せん断応力t_{ap} (= F_N/WH)の関係を示す。図には、単調増加荷重 に対する強度 τ_cの平均値と標準偏差を縦軸 上に示している。順方向と逆方向の試験片と もに、単調増加負荷に対する強度τω以下の負 荷応力においてクリープ破壊が生じた。順方 向試験片では、_{tap} = 52-62 MPa の応力に対し て破断寿命 frが 0.1-3.2 ks であった。一方, 逆方向試験の破断寿命 t_Fは、10.9 ks で破断し なかった一つの試験片を除くと1.5-3.2 ks で あり、順方向と同程度のオーダーであった。 逆方向試験片の負荷応力 tap (=18-25 MPa)は 順方向の τ_{an}の(= 52-62 MPa)の半分以下で ある.図3に示したように、逆方向試験片の 界面端応力特異性は順方向よりも大きいた め、逆方向試験片では小さな公称応力 Tan で界 面端には高い応力が負荷される。上記の結果 は、ナノスケールの界面端の応力拡大が、Ti ナノコラムと Si 基板のクリープによる界面 破壊に大きく関与することを示唆している。

(3) クリープ界面破壊の支配力学

界面端部の特異応力場がナノコラムのク リープ界面破壊に及ぼす影響を検討するた め、Tiナノコラムのクリープを考慮した有限 要素法応力解析を行った。Tiナノコラムの変 形が Si 基板と Ti 均質層に拘束される試験片 構造を考慮して平面ひずみを仮定した。Ti は 室温クリープを示すことが知られており、Si は室温下ではクリープを示さないため、Ti を (1)式で表されるべき乗則クリープに従う変 形体であると仮定し、Si を線形弾性体とした。

$$\dot{\varepsilon}_{\rm eq} = A \sigma_{\rm eq}^n \tag{1}$$

ここで、 $\dot{\epsilon}_{eq} \geq \sigma_{eq}$ はミーゼスの相当ひずみ速度と相当応力である.材料定数 $A \geq n$ は、クリープ実験により得られた変位速度を再現するように後述する方法で決定した。ヤング率とポアソン比は、それぞれE = 106 GPa、v = 0.34 (Ti)、E = 130 GPa、v = 0.28 (Si) とした。図7に解析モデルを示す。まず弾性解析を実施し、クリープ試験において設定荷重に到達した際の変位 δ_N を負荷点に課し、その際の反力を求めた。つぎに、その反力を負荷荷重として一定荷重下のクリープ解析を実施した。

Ti ナノコラムの定常クリープ特性 A と n を以下の方法により推定した。クリープ指数 n = 1, 2, ..., 6に対して、各試験片に対するク リープ実験で得た変位速度 $(d\delta_N/dt)$ を最も良 く再現するAの値をパラメトリック解析によ り決定した。図8に得られた結果をまとめて 示す。図には全試験片に対して解析した結果 を併せて示している。nの低下にともない A の対数線図上のばらつきは減少し、n = 1で最 小となった。したがって、本材のクリープ指 数をn = 1と推定し、全試験片のn = 1に対す るAの幾何平均よりA = 4.0 × 10⁻⁹ s⁻¹MPa⁻¹と 推定した。

順方向と逆方向試験片ともに、負荷圧子に 最も近いナノコラムの応力が最大となった ため、以降の議論では最も端部のナノコラム の応力場を検討した。TiナノコラムとSi基板 界面上の応力場は時間の経過とともに変化 し、界面端近傍の応力は緩和したが、試験時 間中の緩和量はわずかであったため、破断時 間tricおける応力場でクリープ試験中の応力 場をおおよそ特徴づけることができる。図9 は、破断時間 fr における Ti ナノコラムと Si 基板の界面上のミーゼス応力σ_{eq}の分布を示 す。図には、3.2 ks までに破断したすべての 試験の結果を併せて示す。界面端からの距離 が r=1-5 nm の領域で、すべての試験の結果 が良く一致している。一方、その遠方の領域 では順方向と逆方向の試験片の応力分布が 大きく異なっている。順方向と逆方向の試験 片は同一の供試材から作製したものである ため、Ti/Si 界面の本質的な強度は同じである。 また、これらの試験片は同じオーダーの破断 寿命 (f_F = 0.1-3.2 ks) を示した。これらの事 実は、本材のクリープ界面破壊は、界面端形 状や負荷方向によらず界面端近傍の約 5 nm の領域の応力場に支配されていることを示 唆している。

これまでに単調増加荷重に対する単純な 破壊に関しては、界面端近傍のナノスケール の特異応力場が破壊強度を支配することが 明らかになっている。本研究により、時間依 存型変形であるクリープによる破壊におい ても、ナノスケールの応力集中場が大きく関 与することを示す結果が得られた。

5. 主な発表論文等

〔雑誌論文〕(計3件)

① <u>Hiroyuki Hirakata</u>, Yoshiaki Tsutsumi, Kohji Minoshima, Creep Fracture at Interfaces of Titanium Nanocolumns on Silicon Substrate, Engineering Fracture Mechanics, Vol.117, 2014, 71-83, 査読有

DOI:

http://dx.doi.org/10.1016/j.engfracmech.2014.01. 008

② <u>Hiroyuki Hirakata</u>, Naomichi Fukuhara, Shoichi Ajioka, Akio Yonezu, Masayuki Sakihara, Kohji Minoshima, The effect of thickness on steady state creep properties of freestanding aluminum nano-films, Acta Materialia, Vol.60, 2012, 4438-4447, 査読有 DOI: 10.1016/j.actamat.2012.04.036

③ <u>Hiroyuki Hirakata</u>, Taku Nishihira, Akio Yonezu, Kohji Minoshima, Interface Strength of Structured Nanocolumns Grown by Glancing Angle Deposition, Engineering Fracture Mechanics, Vol.78, 2011, 2800-2808, 査読有 DOI: 10.1016/j.engfracmech.2011.08.005

〔学会発表〕(計13件)

 ① 田上孟史, 平方寛之, 箕島弘二, 基板上に 成長させたナノコラムのクリープ特性, 日本 機械学会関西支部第 89 期定時総会講演会, 2014年3月18-19日, 大阪府立大学

② 鹿嶋友樹, <u>平方寛之</u>, 崎原雅之, 箕島弘二, 自立アルミニウムナノ薄膜のクリープき裂 伝ば特性,日本機械学会関西支部第 89 期定 時総会講演会,2014年3月18-19日,大阪府立 大学

 ③ 田上孟史, 平方寛之, 箕島弘二, 基板上に 成長させたナノコラムのクリープ強度, 日本 材料学会第8回若手シンポジウム, 2013年12 月 6-7日, 大阪府東大阪市

 ④ 田上孟史, 平方寛之, 箕島弘二, 基板上に 成長させたナノコラムのクリープ界面強度,
第 57 回日本学術会議材料工学連合講演会,
2013年11月25-26日, 京都テルサ

 ⑤ <u>平方寛之</u>,田上孟史,堤芳明,箕島弘二, 基板上に成長させたチタンナノコラムのク リープ変形と界面破壊,日本機械学会 M&M2013 材料力学カンファレンス,2013 年 10月12-14日,岐阜大学

 ⑥ 竹内恭介, 平方寛之, 箕島弘二, ナノ形状 制御によるチタンナノコラムの強度評価, 日 本機械学会 M&M2013 材料力学カンファレン ス, 2013 年 10 月 12-14 日, 岐阜大学

 ⑦ 堤芳明, 平方寛之, 箕島弘二, チタンナノ コラムのクリープ界面破壊特性, 日本機械学 会関西支部第88期定時総会講演会, 2013年3 月16日, 大阪工業大学

 ⑧ 堤芳明, <u>平方寛之</u>, 箕島弘二, チタンナノ コラム構造の時間依存型界面破壊, 第 56 回 日本学術会議材料工学連合講演会, 2012 年 10 月 30 日, 京都テルサ

⑨ <u>Hiroyuki Hirakata</u>, Naomichi Fukuhara, Akio Yonezu, Kohji Minoshima, Size Effects on Creep Property in Aluminum Nano-films, Asia Pacific Conference on Fracture and Strength - Mechanics and Materials (APCFS-MM 2012), 2012 年 5 月 15 日, Busan, Korea

 ⑩ 福原直道, 平方寛之,米津明生,崎原雅之, 箕島弘二,自立 Al ナノ薄膜の定常クリープ
特性に及ぼすサイズ効果,日本機械学会関西
支部第87期定時総会講演会,2012年3月17日,関西大学

 松永健史,<u>平方寛之</u>,米津明生,箕島弘二, 動的斜め蒸着法により作製した Ti ナノ構造 要素の塑性変形特性,日本機械学会関西支部 第87期定時総会講演会,2012年3月17日,関 西大学

12 <u>Hiroyuki Hirakata</u>, Taku Nishihira, Akio Yonezu, Kohji Minoshima, Interface Fracture of Titanium Oblique Nanocolumns Grown by Glancing Angle Deposition, International Conference on Advanced Technology in Experimental Mechanics 2011 (ATEM'11), 2011

年9月21日,神戸国際会議場

(13) <u>Hiroyuki Hirakata</u>, Taku Nishihira, Akio Yonezu, Kohji Minoshima, Interface Fracture Mechanics of Nanoscale Components on A Substrate, The Nineteenth Annual International Conference on Composites or Nano Engineering (ICCE-19), 2011 年 7 月 28 日, 上海 (中国)

[その他]

ホームページ

http://www-micro.mech.eng.osaka-u.ac.jp/home. html

6.研究組織
(1)研究代表者
平方 寛之(HIRAKATA, Hiroyuki)
大阪大学・大学院工学研究科・准教授
研究者番号: 40362454