# 科学研究費助成事業

研究成果報告書



| 機関番号: 34315                                                                                              |
|----------------------------------------------------------------------------------------------------------|
| 研究種目: 若手研究(A)                                                                                            |
| 研究期間: 2011 ~ 2014                                                                                        |
| 課題番号: 2 3 6 8 6 0 3 7                                                                                    |
| 研究課題名(和文)複雑数理工学が拓く燃焼不安定の非線形ダイナミックスの解明と工学的応用                                                              |
|                                                                                                          |
| 研究課題名(英文)Elucidation of nonlinear dynamics of combustion instability based on dynamical<br>system theory |
| 研究代表者                                                                                                    |
| 後藤田 浩(Gotoda, Hiroshi)                                                                                   |
|                                                                                                          |
| 立命館大学・理工学部・教授                                                                                            |
|                                                                                                          |
| 研究者番号:00434712                                                                                           |
| 交付決定額(研究期間全体):(直接経費) 21,000,000円                                                                         |
|                                                                                                          |

研究成果の概要(和文):近年体系化が進んでいる非線形力学の視点から不安定な燃焼現象の非線形ダイナミックスを 明らかにしていくことは、基礎燃焼分野の新たな展開を切り開いていくだけでなく、高度化する燃焼器の最適な設計・ 制御の開発にも大きく寄与する.研究代表者は、希薄予混合ガスタービンモデル燃焼器で発生する燃焼不安定を対象に 、非線形力学の視点から燃焼不安定の非線形ダイナミックスを明らかにした。特に、局所近似予測法と並進誤差法になせ て抽出された予測可能時間と軌道郡の平行度に基づいて、燃焼不安定の短期予測可能性ならびに事前検知・回避可能性 を明らかにした.

研究成果の概要(英文): This report shows the availability of nonlinear time series analysis based on dynamical systems theory to deal with nonlinear dynamics of combustion instability in a laboratory-scale gas-turbine model combustor, which is one of the most fundamentally and practically important combustion systems. The results obtained by the local predictor to extract the short-term predictability and long-term unpredictability characteristics suggest that with decreasing equivalence ratio, periodic thermoacoustic combustion oscillations transit to low-dimensional chaotic intermittent oscillations owing to the intermittent appearance of burst. The principle investigator successfully proposes a novel online detection method using translation error for problematic limiting phenomena such as lean blowout. It allows us to prevent lean blowout without knowing the actual lean blowout limit.

研究分野: 熱工学

キーワード: 燃焼工学

### 1. 研究開始当初の背景

燃焼は流動、熱・物質拡散、化学反応が相互に作 用し合う複雑な非線形現象であることから、複雑 に変動する燃焼不安定の非線形ダイナミックスを 明らかにしていくことは重要な研究課題の一つで ある.特に,近年体系化が進んでいる非線形力学 の視点から燃焼不安定の非線形ダイナミックスを 明らかにしていくことは、基礎燃焼分野の新たな 展開を切り開いていくだけでなく, 高度化する燃 焼器の最適な設計・制御の開発にも大きく寄与す ると思われる.このような視点に立って、研究代 表者は、旋回燃焼を対象に熱・物質拡散や浮力不 安定によって生じる燃焼不安定のダイナミックス を非線形動力学の視点から明らかにしてきた. そ の結果、燃焼が不安定化する過程に低次元の決定 論的カオスが存在することやファイゲンバームの シナリオで表される周期倍分岐が存在することな どを明らかにしてきた. これまで、燃焼分野にお いても、セル状火炎やパルス燃焼などで観察され る燃焼状態とカオスの関連性が議論されている. しかしながら、工学的・工業的に重要なガスター ビン燃焼器で生じる燃焼不安定のダイナミックス を、より幅広い非線形力学の視点から解明し、そ の特徴を工学的な利用へ発展させる研究は行われ てこなかった.

### 2. 研究の目的

1. 研究開始当初の背景に基づいて,超希薄予混 合ガスタービンモデル燃焼器で発生する燃焼不安 定を対象に,非線形動力学の視点から燃焼不安定 の軌道不安定性を解明する.抽出された軌道不安 定性に基づいて,燃焼不安定の短期予測可能性な らびに事前検知・回避可能性を明らかにすること を目的とする.

#### 3. 研究の方法

本研究で使用する予混合ガスタービンモデル燃 焼器は、空気供給系、主燃料および二次燃料供給 系、燃料-空気混合室、燃焼室、冷却部から構成さ れている.燃料にはメタンを用いる.火炎は燃焼 室入口に組み込まれた軸流スワーラ(ハブ径 19 mm, スワーラ外形 30 mm)によって保持される. 燃焼室内の圧力変動 p' [kPa]は、燃焼室入口から軸 流方向に20mmの位置の燃焼室壁面に取り付けら れた圧力トランデューサー (JTEKT 社製 PD104K-10kPa)を用いて、5 kHz のサンプリング周 波数で測定される.予混合気のスワーラ断面平均 流速 Uを 5.0 m/s, 5.8 m/s とし, 主燃料流量 Q<sub>CH4</sub> を 減少させることで当量比 ∉を 0.75 から 0.49 まで低 下させる.また、本研究では、擬似レーリーイン デックス R を見積ることで、燃焼振動の駆動領域 を調べる. OH 自発光強度の測定には、イメージイ ンテンシファイアー(浜松ホトニクス製 C10880-03F)付き高速度カメラ(Photron 製 FAST CAM SA3 )を用いる.

非線形動力学に基づく時系列解析は、Takensの埋 め込み次元定理を用いて不安定現象の時間変動を 遅延座標系に変換し、構築された位相空間内の軌 道の静的特徴である自己相似性や動的性質である 軌道不安定性を定量化する手法である.本研究で は、次式を用いて、燃焼不安定の圧力変動 p'を位相 空間へ変換し、t<sub>i</sub> (i= 1, 2, ..., N)を変化させることで、 D次元の位相空間内に軌道を描く.

$$\mathbf{p}(t_i) = (p'(t_i), p'(t_i + \tau_s), \dots, p'(t_i + (D-1)\tau_s))$$

ただし、**p**(*t<sub>i</sub>*)を位相空間内の軌道上の点、*t<sub>s</sub>*を遅 れ時間、*D*を位相空間の次元、*N*をデータ点数とす る.また、誤り近傍ベクトルの影響が無視できる 次元を最適な位相空間の次元とし、圧力変動の相 互情報量が最初に最小になるときの時間を最適な 遅れ時間とする.本研究では、軌道同士の距離の 秩序・非秩序構造を明らかにするカラーリカレン スプロット、軌道不安定性を定量化する局所近似 予測法と並進誤差法を用いる.

ー般的に、リカレンスプロットは、位相空間内 の2点間距離||p(t<sub>i</sub>)-p(t<sub>j</sub>)||を*i*,*j*の座標軸から構成さ れる2次元平面上にbinary plotとして表示させた ものである.他方、2点間距離の大きさを画素とし て描画する方法では、リカレンスプロットの構造 が||p(t<sub>i</sub>)-p(t<sub>j</sub>)||の閾値に依存しない利点を有する(雑 誌論文[5]).本研究では、次式を用いて2点間距離 を量子化し、256階調のカラーリカレンスプロット を描く.圧力変動に決定論的な特徴が存在してい れば、カラーリカレンスプロット上に規則正しい 配列構造が形成され、ランダム的な特徴が存在し ていれば、均一的な構造が形成される.

$$R_{i,j} = \frac{\left\|\mathbf{p}(t_i) - \mathbf{p}(t_j)\right\| - \left\|\mathbf{p}(t_i) - \mathbf{p}(t_j)\right\|_{\min}}{\left\|\mathbf{p}(t_i) - \mathbf{p}(t_j)\right\|_{\min}} - \left\|\mathbf{p}(t_i) - \mathbf{p}(t_j)\right\|_{\min}}$$

近接する軌道群間の距離の時間変化に着目した局 所近似予測法は、軌道不安定性の重要な特徴であ る「短期予測可能・長期予測不可能性」を調べる のに有用である.この手法では、まず、圧力変動を 二分する、圧力変動を予測するためのデータベース として前半部分を用い、予測された圧力変動と比較 するための参照用データとして後半部分を用いる. データベースから構成される位相空間内の軌道の予 測される点を  $\mathbf{p}(t_p)$ とし、T ステップ後に  $\mathbf{p}(t_p+T_s\Delta t)$ に 移るものとする. このとき,  $\mathbf{p}(t_p)$ に近接する  $\mathbf{p}(t_k)$ は  $\mathbf{p}(t_k+T_s \Delta t)$ に移る.  $\mathbf{p}(t_k+T_s \Delta t)$ を  $\mathbf{p}(t_p)$ と  $\mathbf{p}(t_k)$ の距離の指 数関数で重みづけすることで、 $\mathbf{p}(t_p+T_s \Delta t)$ を次式より 求める. p(t<sub>n</sub>+T<sub>s</sub> (1)を時系列データに逆変換すること で,予測される圧力変動が得られる.本研究では,軌 道群の決定論的性質が失われる前に、軌道群のデー タベースを更新させることによって, 圧力変動の短 期的な予測を行う(雑誌論文[5]).

$$\mathbf{p}(t_p + T_s \Delta t) = \frac{\sum_{k=1}^{K} \mathbf{p}(t_k + T_s \Delta t) \exp(-\|\mathbf{p}(t_p) - \mathbf{p}(t_k)\|)}{\sum_{k=1}^{K} \exp(-\|\mathbf{p}(t_p) - \mathbf{p}(t_k)\|)}$$

ただし、k を近傍点数、 $\Delta t$  を圧力変動の時間分解能、  $T_s$ を予測ステップとし、 $k = 1000, \Delta t = 0.2 \text{ ms}, T_s = 1$ とする. なお、本手法では、 $\mathbf{p}(t_i) = (p'(t_i), p'(t_i - \tau_s),..., p'(t_i - (D-1)\tau_s))$ とする.

近接する軌道群の平行度を算出する並進誤差法 は、局所近似予測法と同様に、軌道不安定性を定 量化する上で重要な手法であるが、本研究では、 燃焼不安定のオンライン回避を行うために並進誤 差を検知器として用いる.この方法では、 $p(t_i)$ の最 近傍ベクトル $p(t_k)$  (k = 1, 2, ..., K)のそれぞれにつ いて、Tステップだけ時間が経過した後の $p(t_k+T\Delta t)$ に着目する.このとき、各軌道のベクトル $v(t_k)$ (=  $p(t_k+T\Delta t)-p(t_k)$ )の方向の分散は並進誤差  $E_{trans}$  とし て次式で表せる.ただし、 $v(t_k)$ を平均化したベクト ルとする. $v(t_k)$ が互いに平行であれは、圧力変動は 決定論的な特徴を有し、 $v(t_k)$ が互いに交差してい れば、ランダム的な特徴を有する.本研究では、  $p(t_i)$ を無作為に M 個選択し、その平均値を  $E_{trans}$  と して求める.そして、100 ms ごとにサンプリング される圧力変動から並進誤差をオンラインで算出 させる(雑誌論文[5]).

$$E_{trans} = \frac{1}{K+1} \sum_{k=0}^{K} \frac{\left\| \mathbf{v}(t_k) - \hat{\mathbf{v}} \right\|^2}{\left\| \hat{\mathbf{v}} \right\|^2}$$

ただし, *k* を近傍点数, *T* を時間ステップとし, *k* = 5, *T* = 8, *M* = 100 とする.

### 4. 研究成果

図 1 に当量比φを変化させたときの圧力変動 p を示す.  $\phi = 0.75$  のとき、振幅が大きく、周期性の 強い振動、いわゆる燃焼振動が顕著に観察される。 なったバーストが間欠的に生じるようになる.こ のような間欠的な燃焼振動は、ブラフボディー型 の燃焼器でも観察されていることが報告されてい る. 吹き消え付近に対応するφ = 0.51 まで当量比 を低下させると、燃焼振動は消滅し、振幅の小さ な不規則変動へ移行するようになる. 図 2 に圧力変 動のパワースペクトルとφの関係を示す. 燃焼振動 が形成される = 0.75 では、約 170 Hz に卓越的な 周波数ピークが観察され、圧力変動が間欠的にな るまで保持される. 燃焼室入口を固定端, 出口を 開放端としたときの燃焼室縦方向の 1/4 波長音響 共鳴モードが卓越されていると考えられる. 燃焼 振動が消滅する吹き消え付近では、この共鳴モ・ ドは観察されなくなり、パワースペクトル分布も 連続的になる。本研究で形成される燃焼振動の周 期性は強いが、サイクルサロゲートを考慮した順 列エントロピー法, サイクルネットワーク法と位 相空間ネットワーク法による複雑ネットワークを 用いることで,疑周期振動,高次元性,スモール ワールド・スケールフリー性など、周波数解析で は抽出できない複雑なダイナミックスが存在する ことが明らかにされている(雑誌論文[2]). 本研究 の燃焼室で形成される流れ場は二つの大きなスケ ールを伴った再循環流, すなわち旋回流れに起因 するスワーラ中心軸上の渦崩壊と Damp 領域にお ける循環流から成ると考えられる.そして、2つの 循環流の境界領域におけるせん断層不安定で生成 される渦運動に起因した火炎面巻き込みを伴って、 燃焼振動が保持される、本研究では、次式で示す 擬似レーリーインデックス R を見積ることで、燃 焼振動の駆動領域を調べる.

$$R(x, y) = \frac{1}{\int} p(t) I_{OH^*Abel}(t, x, y) dt$$

ただし, p(t)はバンドパスフィルタをかけた圧力変 動信号,  $\tau$ はピーク周波数の1サイクルに対応する 時間,  $I_{OH^*Abel}(t, x, y)$ は位相平均した自発光強度分 布のアーベル逆変換後の強度分布とする.

図3に燃焼振動が形成されているときの擬似レ ーリーインデックスRの空間分布を示す。上述の せん断層領域でRは大きくなっており、せん断層 領域における圧力変動と熱発生率の相互干渉が燃 焼振動の保持に対して重要な役割を担っているこ とを示唆している。



Fig. 1: Temporal evolutions of pressure fluctuations p' for different equivalence ratios  $\phi$ 



Fig. 2: Power spectrum distribution of pressure fluctuations p' for different equivalence ratio  $\phi$ 



Fig. 3: Spatial distribution of pseudo-Rayleigh index



Fig. 4: Recurrence plots (RPs) composed of 50000 ×50000 points for intermittent pressure fluctuations.

間欠的な燃焼振動のダイナミックスの一端を明 らかにするために、 $\phi$ =0.61のときに形成される間 欠的な燃焼振動のカラーリカレンスプロットを図 4 に示す.ただし、10秒間の圧力変動(50000×50000 点)を表示させたものとする.図 4(a)で示されるよ うに、カラーリカレンスプロット内では、大きな 正方形や長方形が規則的に存在しつつも、カラー 分布が均一化した不規則的な構造も有している.*N* = 20000から 23000までの領域を拡大すると、同様 な傾向が観察されている.さらに *N* = 20100から 20400までの領域を拡大すると、周期的運動の存 在を示す対角方向の線が断続的に形成されている. これらの結果から、間欠的な燃焼振動が発生して いる領域では、周期構造と不規則構造が入り組ん だ間欠カオスの存在の可能性が示唆される.

間欠カオスの存在についてより詳細な検討を加 えるために、局所近似予測法を用いて短期予測可 能・長期予測不可能性を明らかにする、最近、固相 と気相に挟まれる薄い液相の変形運動や化学反応 面の位相乱流などを記述する一般化された Kuramoto-Sivashinsky 方程式から生成される相界 面ダイナミックスを対象に, 高次元の決定論現象 と確率現象を分離する方法論を提案した(雑誌論 文[1]). この方法では、データベースの更新を考慮し た局所近似予測法を用いて、時系列データとその増 分過程をそれぞれ短期的に予測させる. そして, 両 者の短期予測可能・長期予測可能性が一致すればダ イナミックスは決定論的として、一致しない場合は 確率的として判定する.間欠的な燃焼振動に本手 法を適用した結果を図 5 に示す. なお、横軸は予 測時間 tp を, 縦軸は予測値と計測値の相関係数 C を示し、図5の上側はオリジナルデータを、図5の 下側はオリジナルデータの増分過程(=Δp')を予測 させたものとする.得られた  $C \ge t_P$ の関係は,短 期予測可能・長期予測不可能の性質を示しており、 両者の分布はほぼ対応している.このことから、 間欠的な燃焼振動にはカオス的な特徴を有すると 言える.他方、図6で示されるように、吹き消え付



Fig. 5: Changes in the correlation coefficient *C* between the actual and predicted dynamic behaviors in the intermittent pressure fluctuations as a function of the duration  $t_P$  of the actual pressure fluctuations added to the library data. Changes in *C* for increments of  $\Delta p'(=$  $p(t_{i+1})-p(t_i))$  are also shown as a function of  $t_P$ .



Fig. 6: Changes in the correlation coefficient *C* between the actual and predicted dynamic behaviors of pressure fluctuations close to lean blowout as a function of the duration  $t_P$  of the actual pressure fluctuations added to the library data. Changes in *C* for  $\Delta p'(=p'(t_{i+1})-p'(t_i))$  are also shown as a function of  $t_P$ .



Fig. 7: Quantification of short-term predictability and long-term unpredictability characteristics.

近では 両者が一致しておらず,吹き消え付近の 圧力変動は確率的であると言える.研究代表者は, 決定論現象と確率現象の分離法のみならず,短期 予測可能・長期予測不可能性の定量化には,予測 可能時間 t<sub>P,c</sub>と相関係数の勾配 dlnC/dln t<sub>P</sub>が重要で あることも提案している(雑誌論文[1]).図 7 で示

されるように、もし、ダイナミックスが複雑にな れば、*t<sub>Pc</sub>*は低下し、dln*C*/dln *t<sub>P</sub>*は増加する.図8に  $t_P$  cと dlnC/dln  $t_P$ を $\phi$ で整理した結果を示す.  $\phi$ が低 下し,間欠的な燃焼振動が形成されると, t<sub>Pc</sub> は著 しく低下し、dlnC/dlntp は増加する. 吹き消えに近 づくに伴って、 $dln C/dln t_P$  はさらに増加する. これ らの結果から、本手法が当量比の低下に伴う燃焼 不安定の複雑化を特徴づけるのに有用であると言 える. 図 9 に  $\phi$  = 0.65 における *p*'と並進誤差 *E*<sub>trans</sub> の時間変化を示す. 圧力変動の振幅が急激に変化 すると同時に、E<sub>trans</sub>の値も大きく変化する.この ことは、並進誤差は圧力変動の急激な変化に対し て瞬時に応答していることを示しており、並進誤 差によって燃焼状態を検知することが可能である と言える.図 10 に фを変化させたときの圧力変動 振幅の標準偏差  $p'_{rms}$  と  $E_{trans}$  の関係を示す.  $p'_{rms}$  は  $\phi$ の低下に伴って緩やかに減少し、φ = 0.62 におい て燃焼振動が発生しなくなると、急激に減少する. さらに *ф*を低下させると, *p*'<sub>ms</sub> はほぼ一定となる. このことは、吹き消え付近の燃焼状態を p'ms で特 徴づけることはできず, p',ms に閾値を設けても吹 き消え付近の燃焼状態を制御することが困難であ ることを示唆している.他方,並進誤差に着目す ると、*φ* = 0.62 において燃焼振動が発生しなくな ると、*E*<sub>trans</sub> は急激に増加する. この傾向は *p*'<sub>rms</sub> と ほぼ対応している. φをさらに低下させていくと,  $p'_{rms}$ の場合と異なり、 $E_{trans}$ は吹き消えに至るまで 単調に増加する.当量比の低下に伴って,圧力変 動の決定論的な特徴が失われていくが、並進誤差 は吹き消え付近における燃焼状態の変化を十分捉 えている.これらの結果から、本研究で導入する 並進誤差法は吹き消え付近の燃焼状態を特徴づけ ることが可能であり、吹き消えの発生を検知する ことが可能であると思われる. そこで本研究では、 図 10 で示された並進誤差と当量比の関係に着目 して、吹き消えのオンライン回避を行う. 図 11 に 二次燃料流量を変化させたフィードバック制御を 用いて吹き消えの回避を行った結果を示す. 図中 の点線で示されるように、燃焼状態が吹き消えの 領域に至るまで主燃料流量 QCH4 main のみを徐々に 低下させる.本研究では, Q<sub>CH4,secondary</sub>  $=\alpha(E_{trans}-E_{trans,thre})$ となるように、設定された並進誤 差の閾値 Etrans.thre とリアルタイムに算出される E<sub>trans</sub>との差に比例した値を二次燃料流量  $Q_{CH4,secondary}$ と関連づけることで、吹き消えの回避 を行う. ただし, E<sub>trans,thre</sub> = 0.15, a = 1.0 とする. 図 11 で示されるように、*Q*<sub>CH4,main</sub>を著しく低下させ、 吹き消えが発生する条件に至っても、Q<sub>CH4, secondary</sub> の増加によって、吹き消えが発生する当量比より も高い当量比を維持しながら、回避されている. Q<sub>CH4,main</sub>のみを低下させ、吹き消え領域に至った 後に Q<sub>CH4,main</sub>を増加させた場合の結果を図 12 に



Fig. 8: Variations in  $t_{P,c}$  and  $|dlnC/dlnt_P|$  as a function of equivalence ratio  $\phi$ .



Fig. 9: Time variations of pressure fluctuations p', three-dimensional phase space  $(p'(t), p'(t+\tau_s), p'(t+2\tau_s))$ , and translation error  $E_{trans}$ . The amplitude of p' drastically changes with the onset of intermittency.  $E_{trans}$  responds to the drastic change in p'.



Fig. 10: Standard deviation of pressure fluctuations  $p'_{rms}$  and translation error  $E_{trans}$  as functions of equivalence ratio  $\phi$ .



Fig. 11: Time variation of equivalence ratio  $\phi$  with decreasing volume flow rate of main fuel  $Q_{CH4 main}$ .



Fig. 12: Time variation of equivalence ratio  $\phi$  with decreasing and then increasing volume flow rate of main fuel  $Q_{\text{CH4,main}}$ .

示す. 図 11 で得られた結果と同様に,吹き消えは 回避されている. これらの結果から,並進誤差を 検知器に用いることで,吹き消えの回避を行うこ とが可能であることがわかる. 本研究で導入した 並進誤差は周波数解析では特徴化が困難な燃焼不 安定の事前検知・回避を可能にするものと思われ る.

## 5. 主な発表論文等

〔雑誌論文〕(計13件)

[1] <u>H. Gotoda</u>, M. Pradas, S. Kalliadasis, Nonlinear Forecasting of the Generalized Kuramoto-Sivashinsky Equation, *International Journal of Bifurcation and Chaos*, vol. 25, 1530015, 2015, 10.1142/S0218127415 300153, 査読有.

[2] Y. Okuno, S. Michael, <u>H. Gotoda</u>, Dynamics of self-excited thermoacoustic instability in a combustion system: Pseudoperiodic and high-dimensional nature, *Chaos*, vol. 25, 043107, 2015, http://dx.doi.org/10. 106 3/1.4914358, 査読有.

[3] A. Adzlan, S. Tsutsumi, **H. Gotoda**, Near-field behavior of variable property jet with swirling flow generated by a change in gravitational orientation, *Physics of Fluids*, vol. 27, 024105, 2015, http://dx.doi. org/10.1063/1.4906372, 査読有.

[4] S. Domen, <u>**H. Gotoda**</u>, T. Kuriyama, Y. Okuno, S. Tachibana, Detection and prevention of blowout in a

lean premixed gas-turbine model combustor using the concept of dynamical system theory, *Proceedings of the Combustion Institute*, vol. 35, 3245, 2015, http://dx.doi.org/10.1016/j.proci.2014.07.014, 査読有. [5] **H. Gotoda**, Y. Shinoda, M. Kobayashi, Y. Okuno, S. Tachibana, Detection and control of combustion instability based on the concept of dynamical system theory, *Physical Review E*, vol. 89, 022910, 2014, doi: 10.1103/PhysRevE.89.022910, 査読有.

[6] <u>H. Gotoda</u>, R. Takeuchi, Y. Okuno, T. Miyano, Low-dimensional dynamical system for Rayleigh-Bénard convection subjected to magnetic field, *Journal of Applied Physics*, vol. 113, 124902, 2013, http://dx.doi.org/10.1063/1.4795264, 査読有.

[7] <u>H. Gotoda</u>, M. Amano, T. Miyano, T. Ikawa, K. Maki, S. Tachibana, Characterization of complexities in combustion instability in a lean premixed gas-turbine model combustor, *Chaos*, vol. 22, 043128, 2012, http:// dx.doi.org/10.1063/1.4766589, 査読有.

[8] **H. Gotoda**, T. Ikawa, K. Maki, T. Miyano, Short-term prediction of dynamical behavior of flame front instability induced by radiative heat loss, *Chaos*, vol. 22, 033106, 2012, http://dx.doi.org/10.1063/ 1.4731267, 査読有.

[9] **H. Gotoda**, H. Nikimoto, T. Miyano, S. Tachibana, Dynamic properties of combustion instability in a lean premixed gas-turbine combustor, *Chaos*, vol. 21, 013124, 2011, doi:10.1063/1.3563577, 査読有.

〔産業財産権〕
出願状況(計2件)
[1] 名称:観測装置及び観測方法
発明者: **後藤田浩**, 篠田雄太,小林将紀,立花繁
権利者:学校法人 立命館,独立行政法人 宇宙航
空研究開発機構
特願:112330
出願年月日:2012年5月16日
国内外の別:国内

 [2] 名称:観測装置及び観測方法
 発明者: 後藤田浩, 衣川輝,奥野佑太,道免昌平 権利者:学校法人 立命館
 特願:053624
 出願年月日:2015年3月17日
 国内外の別:国内

〔その他〕 受賞

[1] 後藤田浩, 平成 26 年度 文部科学大臣表彰 若手科学者賞

[2] 後藤田浩, 平成 24 年度 日本燃焼学会奨励賞

ホームページ

http://www.ritsumei.ac.jp/se/jimu/gotoda/

# 6. 研究組織

研究代表者
 後藤田 浩(Gotoda Hiroshi)
 立命館大学 理工学部 教授
 研究者番号:00434712