

科学研究費助成事業(学術研究助成基金助成金)研究成果報告書

平成 25 年 05 月 22 日現在

機関番号:32409				
研究種目:若手研究(B)				
研究期間:2011~2012				
課題番号:23760235				
研究課題名(和文) 多次元内視鏡の開発				
研究課題名(英文) Development of multi-dimensional endoscope				
岩山 役隆 (WAKAYAMA TUSHITAKA)				
埼玉医科大字・保健医療字部・准教授				
研究者番号:90438862				

研究成果の概要(和文):

本研究は、内面形状と共にその性状をとらえる新しい内視鏡の開発を行った。分光情報から 非接触で光バイオプシ・イメージングを三次元形状計測と同時に行った。また、産業界から要 求が強くあった同軸計測を達成するために、共焦点法を取り入れ、超精密な内面形状計測を可 能にした。また、これらの要素技術として、円錐ミラーや円錐レンズをアクリルにて開発する 過程で特異な偏光現象を発見し、今までにない光学素子の開発を行った。

研究成果の概要(英文):

I have developed a novel endoscope obtained its properties and conditions with inner profile. This study was achieved optical biopsy imaging from spectrum information and three dimensional profile measurement. To overcome uni-axial measurement, it is possible to measure inner profile surface from confocal technique, precisely. I have developed novel optical elements after I discovered unique polarized phenomena by process for fabricating conical mirror and lens as element technologies. 交付決定額

			(金額単位:円)
	直接経費	間接経費	合 計
交付決定額	3, 500, 000	1,050,000	4, 550, 000

研究分野:工学 科研費の分科・細目:機械工学・知能機械学・機械システム キーワード:内視鏡,三次元,分光,偏光

1. 研究開始当初の背景

申請者は産業分野で実用できる内面形状 計測用のプローブカメラの開発に取り組ん でおり、その新しい応用分野として医療分野 に注目していた。近年、分光バイオプシ・イ メージングの必要性が高まると共に産業分 野でパイプや配管の内面形状を超精密にか つ同軸に計測することが望まれていた。

2. 研究の目的

本研究は、医療における分光バイオプシ・ イメージングを三次元形状計測と同時に行 う装置の開発と、共焦点手法によってパイプ や配管の内面形状を超精密にかつ同軸に計 測する手段の開発を行った。

3. 研究の方法

A. 分光三次元内視鏡の開発

研究開始当初はバイオプシ・イメージング を達成するためにスペクトルリング発生プ ローブの開発を考えていたが,光学系が複雑 になるのに加えて,精度が出にくいことが基 礎実験から明らかになった。これにより,ス ペクトルリング発生プローブの開発は一時 中止し,白色リングの発生を行った。

次に得られた白色リングビームを分光イ メージングする手段として、ラジアル分光器 の開発を申請書に従って開発した。ナノイン プリント技術を利用した手法を当初は検討 していたが、とても高価になるため、回折格 子シートを短冊状にして、これを貼り合わせ る方式を採用した。ここでは、より鮮明な分 光画像を得るために1500rpmで回転できる中 空型高速回転モータを導入した。

また,白色リングビームプローブをより効 果的に発生することを目的にキーデバイス となる円錐ミラーや円錐レンズをアクリル から自作した。この過程で,アクリル製の円 錐レンズに特異な偏光分布が発生すること が明らかになった。この特異な偏光分布から 特殊光学素子の開発も合わせて行った。

B. 同軸−共焦点型の超精密な三次元内視 鏡の開発

研究当初はレンズの色収差を導入した同 軸の共焦点型三次元内視鏡を開発する予定 であったが,A.に示したように光学系が複雑 になるのに加えて,見込まれる精度がそれほ ど高くならないことが明らかになった。レン ズの色収差に対して,レンズを可変焦点レン ズにすることで光学系の複雑さをなくした 同軸-共焦点型の超精密な三次元内視鏡の 研究開発を行った。

4. 研究成果

図1に分光三次元内視鏡の光学系を示す。 白色光源として用いた LED を光ファイバに回 折光学素子で集光し、 コリメートレンズを介 して平行光にする。白色の平行光を円錐ミラ ーに照射すれば、光はディスク状に広がる。 測定対象となるサンプルには光のリングに よって光セクショニング面が形成されるこ とになる。この光セクショニング面をレンズ を介して、ラジアル回折格子に結像させる。 その結像面をもう一つの結像レンズによっ て CCD に結像させる。これにより、CCD 上に は白色の光セクショニング面と同時にラジ アル回折格子によって分光された分光情報 を独立して取得することができる。サンプル の吸収スペクトルによって分光画像は変化 することになる。

図2に試作した白色リングビームプローブ を示す。光ファイバコリメータの共に先端に は円錐ミラーが設置されている。

図3はラジアル回折格子とレンズおよび CCDによって構成されたラジアル分光器で取 得した光セクショニング面の分光画像であ る。中心にある白色の円分布が光セクショニ ング面であり、その外側に七色のスペクトル リングが形成されている。これがラジアル分 光器によって取得された分光情報である。こ こで使用した測定サンプルは周方向に均一 な測定サンプルであるため、分光情報に変化 はないが、測定サンプルの吸収特性が異なる と、この分光情報に欠陥部分が生じる。z軸 ステージやセンサを利用することで、パイプ や配管、生体における管の内面の三次元形状 と共に分光吸収スペクトルを取得できる。

- 図1 分光三次元内視鏡の光学系
- (a) 光学系
- (b) CCD に結像された光セクショニン
 グ面と分光情報
- (c) 半径方向に取得した光強度分布 白色に光セクショニングされたデ ータは半径を示すのに対し、スペク トルで示された部分はサンプルの 持つ分光特性を示すことになる。

図2 白色リングビームプローブ

図3 ラジアル分光器による分光画像

Z方向 25mm

サンプル (直径40mm) 図 4 使用したサンプル

図5取得された分光画像

図6 取得された分光画像

図4にデモンストレーション用に作製した サンプルを示す。色の異なるマジックを用い て"SMU"と描かれた紙を図のように丸めた ものである。このサンプルによってマジック インクの成分から吸収スペクトルに変化が 生じると予想した。実験ではこのサンプルを 一軸ステージに固定しステップ毎に画像を 取得した。

図5はCCDカメラによって結像された白色 の光セクショニング面と、この光セクショニ ング面の分光画像である。白色の光セクショ ニング面はサンプルの形状を示している。ま た、カラーで示されているものが分光情報で ある。図4に表示したSMUの赤色で書かれ た"S"の部分に光セクショニング面がある ため、図5の左下部分の分光スペクトルだけ が吸収特性を有していることがわかる。

図6は50枚/25mmの間隔で分光画像を取得 し、画像解析した結果を示している。少し見 にくいが、白色の光セクショニング分布から 物体の内面形状およびそのテクスチャ画像 が確認される。これに対して分光スペクトル の分布では青から緑色の吸収が特に多いた め、Sの分布が赤色にて表示されていること が理解できる。この結果は視覚的に簡単にイ メージしやすくするためにカラーカメラを 用いているが、本来はカラーカメラでなく、 モノクロカメラを用いてその分光スペクト ル情報をセクショニングすることが望まし いと考えている。

以上の基礎実験結果から本手法をとれば, 管の三次元形状と共にその内部の吸収スペ クトルを三次元空間上で表示することが可 能になる。これにより分光バイオプシ・イメ ージング可能な三次元内視鏡が提供できる。

次に同軸・共焦点光学系を導入した超高精 度内面形状計測法の成果報告を行う。図7に 示すように可変焦点レンズと円錐ミラーの 組み合わせから焦点位置を自在に変化させ ることができるリングビームを生成するこ とができる。

図8に同軸 - 共焦点型の三次元内視鏡の光 学系を示す。今回は光源に He-Ne laser を用 いた。レーザー光はコリメータで平行光とさ れて, ミラーに照射される偏光子によって光 強度を制御し、 偏光ビームスプリッタによっ て9時方向に光を導く焦点可変レンズ (VFL) と円錐ミラーによってリングビームの焦点 位置を電流値によって制御することができ る。サンプルにあたった光強度を CCD カメラ によって撮像する。このとき, CCD カメラの 搭載された瞳によって測定する分解能をコ ントロールできる。今回の実験では, He-Ne laser の出力は 3mW とし, 電流値を 0.03~ 0.33[A]で制御することでリングビームの内 径を40~130 [mm]の範囲で制御することが可 能になった。

図9に基礎実験の結果を示す。測定サンプ ルには長さ25mmの紙面を円錐ミラーの中心 から47mmの位置に9時の方向に設置した。 図9に示すように円錐ミラーを介して得られ た光強度分布は電流値に対して特徴ある光 強度分布が検出された。光強度分布をみると、 電流値が0.23[A]のときに光強度が最も強く 帰ってきたことがわかる。これはあらかじめ 測定していた焦点可変レンズの特性から 58mm離れていることがわかる。この結果は、 上記に示した円錐ミラーと紙面の距離47mm に加えて円錐ミラーと紙面の距離47mm に加えて円錐ミラーと低点可変レンズの距 離が12mmであったので47mm+12mm=59mmで 測定結果と設置した長さは良く一致してい ると言える。

本測定の現在の分解能を半径方向と径方 向の角度を求めたところ,約 2.0 mm と約 1.6°(1.4mm)が算出された。この実験では カメラレンズの都合から分解能が低くなっ ているが,カメラレンズの画角を調整するこ とや制御電流の分解能を向上することで計 測される分解能は向上すると期待している。 理論上は,半径方向で共焦点の形状計測と同 等,半径方向の分解能は 0.3°となっている。

第三に産業界の要求から内面形状計測用 コンパクトプローブカメラの開発を行った。 図 10 に示しように直径 3mmの関節鏡に光フ ァイバ型のリングビームデバイスを取り付 けた構造である。光源には高強度な半導体レ ーザーを用いている。図の下側に示されてい るように光ファイバを利用しているので、半 導体レーザーのもつ光強度分布のムラがな くなっている。しかしながら、本装置は光フ ァイバを用いているため、死角が生じてしま う。

図 11 に本装置を用いて測定した自動車の ピストンピン孔の結果を示す。ピストンピン 孔の直径は約 20mm となっている。孔の形は ほぼ円形であるが,油用の溝が掘られている。 本計測装置を使って評価すれば,溝の深さが 0.7mm であることが簡単に測定できる。

図8 基礎実験光学系

Ring beam on paper

図 10 コンパクト三次元内視鏡

(left)

図 11 ピストンピン孔の評価

最後に、本研究でキーとなる円錐ミラーや 円錐ミラーをアクリルで自作過程で円錐面 に特異な偏光分布が形成されることを見出 した。この分布はアクリルによるフレネル反 射が円錐面上で起こることで軸対称の偏光 分布を形成する。これは、つまり、アクロマ ティック軸対称波長板の開発につながると 考えられた。この基礎的な思考から本研究で はアクロマティック軸対称波長板も合わせ て研究開発を進めた。

図 12 にアクロマティック軸対称波長板の 構造を示す。これはフレネルロム波長板を光 軸方向に回転させたすり鉢構造になってい る。入射偏光が直線偏光であれば、出射する ビームは角度 θ に対して変化する。これはフ レネル反射に基づいているので得られる p-s 偏光の位相差は波長に依存性しない。

図 12 アクロマティック軸対称波長板

図 13 アクロマティック軸対称波長板

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計4件)

1. <u>T.Wakayama</u>, K. Komaki, Y. Otani, T.Yoshizawa, "Achromatic Axially Symmetric Wave Plates,"Opt. Express, 20, 29260-29265, 2012.査読有

2. <u>T.Wakayama</u>, K.Machi, T.Yoshizawa, "Small size probe for inner profile measurement of pipes using optical fiber ring beam device," Proc. SPIE, 85630L, 85630L~1-85630L-7, 2012. 査読有

3. <u>T.Wakayama</u>, Y.Otani, T.Yoshizawa, "An interferometric observation of topological effect by novel axially symmetrical wave plate,"Proc.SPIE, 849306, 849306~1-849306-8, 2012. 査読有

4. T.Yoshizawa, <u>T.Wakayama</u>, Y.Kamakura, "Development of a probe for inner profile measurement and flaw detection,"Proc.SPIE, 81330D, 81330D-1~81330D-6,2011. 査読有

〔学会発表〕(計8件)

1. <u>若山俊隆</u>,吉澤徹,"同軸内面形状計測," 精密工学会春季大会,2013年3月13日 (東 京工業大学,東京)

2. <u>若山俊隆</u>, 間地築, 吉澤徹, "光ファイバ を導入した内面形状計測用細径プローブ,"光 計測シンポジウム, 2012 年 11 月 16 日 (機 械振興会館, 東京)

3. <u>T.Wakayama</u>, K.Machi, T.Yoshizawa, "Small size probe for inner profile measurement of pipes using optical fiber ring beam device," in Optical Metrology and Inspection for Industrial Applications II of SPIE international conference 2012/11/5 (SanDiego, USA).

4. <u>T.Wakayama</u>, Y.Otani, T.Yoshizawa, "An interferometric observation of topological effect by novel axially symmetrical wave plate," in Interferometry XVI of SPIE international conference 2012/8/12 (SanDiego, USA).

5. <u>若山俊隆</u>,大谷幸利,吉澤徹,"アクロマ ティック軸対称波長板の開発,"応用物理学会 春季大会,2012 年 3 月 17 日(早稲田大学, 東京)

6. <u>若山俊隆</u>,吉澤徹,"内面計測用小型三次 元プローブの開発(第5報) — 光ファイバ・ リングビームプローブの導入 —,"精密工学 会春季大会,2012 年 3 月 14 日(首都大学東 京,東京)

7. 齊藤菜都美,<u>若山俊隆</u>,吉澤徹,"分光三 次元内視鏡に関する研究,"精密工学会春季大 会,2012年3月14日(首都大学東京,東京)

8. T.Yoshizawa, <u>T.Wakayama</u>, Y.Kamakura "Development of a probe for inner profile measurement and flaw detection," in Dimensional Optical Metrology and Inspection for Practical Applications of SPIE international conference, 2011/8/ 29(SanDiego, USA). 〔産業財産権〕 〇出願状況(計2件)

名称:軸対称偏光変換素子 発明者:<u>若山俊隆</u>,大谷幸利,吉澤徹 権利者:埼玉医科大学,宇都宮大学 種類:特願および PCT/JP2013 番号:特願 2012-025150,PCT/JP2013/52834 出願年月日:24年2月8日,25年2月8日 国内外の別:国内および国外

名称:形状計測装置 発明者:<u>若山俊隆</u> 権利者:埼玉医科大学 種類:特願 番号:特願 2013-026271 出願年月日:25年2月14日 国内外の別:国内

6.研究組織
 (1)研究代表者
 若山俊隆(WAKAYAMA TOSHITAKA)
 埼玉医科大学・保健医療学部・准教授
 研究者番号:90438862