

# 科学研究費助成事業(学術研究助成基金助成金)研究成果報告書

平成 25 年 5 月 31 日現在

| 機関番号:23803                                                        |
|-------------------------------------------------------------------|
| 研究種目:若手研究(B)                                                      |
| 研究期間:2011~2012                                                    |
| 課題番号:23790017                                                     |
| 研究課題名(和文) ヘテロアラインの酸化還元変換による反応位置制御法の開発                             |
| 研究課題名(英文) Regiocontrol of heteroaryne reactions by redox change   |
| 研究代表者<br>井川 貴詞 (IKAWA TAKASHI)<br>静岡県立大学・薬学部・助教<br>研究者番号:20453061 |
|                                                                   |

研究成果の概要(和文):シリル基を配向基として用いることによって3,4-ピリダインとフラン 類の Diels-Alder 反応が位置選択的に進行した。更に、得られた環化付加生成物における1,4-エポキシ環の開環と、配向基として利用したシリル基の変換によって、イソキノリンを合成す ることができた。本法は、多彩なイソキノリン類を選択的に合成する新手法となった。

研究成果の概要(英文): A new synthetic route to isoquinoline derivatives consisting regioselective Diels-Alder reactions of 3,4-pyridynes with furans and following functional group transformations is reported. The key for the regioselectivity of the cycloaddition reactions is electropositive silicon atom of the 2-position of 3,4-pyridyne. This directing group can also be substituted with various functional groups.

交付決定額

|       |           |           | (金額単位:円)  |
|-------|-----------|-----------|-----------|
|       | 直接経費      | 間接経費      | 合 計       |
| 交付決定額 | 3,400,000 | 1,020,000 | 4,420,000 |

研究分野:化学系薬学

科研費の分科・細目: 有機化学

キーワード:ピリダイン・イソキノリン・Diels-Alder 反応・位置選択性・ケイ素官能基・フ ラン・複素環・カップリング

1. 研究開始当初の背景

含窒素ベンザイン(ヘテロアライン)の中 でもピリダインは、最もシンプルかつ有用性 の高い反応中間体として知られ、三重結合の 位置により 2,3-ピリダイン1と3,4-ピリダイ ン2の2種類に分類される (Figure 1)。その 発生法と反応は古くから研究されており、特 に最近、これらを中間体とする反応が次々に 開発されている。



## Figure 1

しかし、置換基を持たない 3,4-ピリダイン 2aを用いた反応の場合、その位置選択性が低 いため、反応後の生成物として位置異性体の約1:1 混合物を与える。

一方、2位に電子吸引性の置換基 R (2b, R = NR<sup>1</sup><sub>2</sub>, Bos, L. B. et al. *J. Recl. Trav. Chim. Pays-Bas* **1969**, *88*, 881–890; **2c**, R = OMe, Caubère, P. et al. *Heterocycles* **1997**, *45*, 2113–2129; **2d**, R = CONEt<sub>2</sub>, Snieckus, V. et al. *Heterocycles* **1992**, *33*, 533–536) を有する 3,4-ピリダイン **2b-d** を反応系中で発生させた場合、その求核付加反応が4位へ位置選択的に進行することが報告されている (Scheme 1)。しかし、反応位置を制御するために使用された置換基 R は通常、変換が困難である上に、求核付加反応より位置制御が難しい[4+2]環化付加反応については、充分にコントロールすることができなかった。



#### Scheme 1

一方、Guitián らは2位に変換容易な塩素官 能基を有する 3,4-ピリダイン 2e とフラン 5a との Diels-Alder 反応が位置選択的に進行す る事を見出した (Guitián, E. et al. Eur. J. Org. Chem. 2001, 4543–4549) (Scheme 2)。更に、彼 らは塩素を還元的に除去し、水素へと変換す ることでイソキノリン骨格を有する ellipticine 8a の全合成を達成した。芳香族塩 素は、反応後に比較的柔軟に変換可能である が、その他の反応例は全く示されておらず、 2-クロロ-3,4-ピリダイン2eを他の基質及び反 応に利用できるかどうかは不明である。また、 必ずしも選択性が充分とは言えないことか ら、この研究分野の進展は有機合成の発展に 極めて重要である。



2. 研究の目的

ピリダインは高い反応性を有しているた め、様々な反応剤と反応し、多様な化合物を 与える。そのため、ピリダインの反応はピリ ジン修飾法として有用な合成ツールとなり 得る。特に、3,4-ピリダイン2とフラン5の Diels-Alder 反応は一挙にイソキノリン骨格を 構築できる極めて魅力的な反応である。しか し、無置換の 3.4-ピリダイン 2a と非対称に置 換されたフラン5の反応では、分離困難な2 つの異性体 (5 and 6) 混合物を与え、基本的 に位置選択性をほとんど発現しない。一方、 酸素官能基やクロロ基などの電子求引性基 が置換した 3,4-ピリダイン (2c, R = OX; 2e, R = Cl) を用いた場合に位置選択的に反応が進 行することが報告されているが、その選択性 は未だ十分ではない。また、適用可能な基質 も限られおり、この種の反応における一般性 の高い位置制御法は未だ確立されていない。

一方、申請者は最近、3 位にシリル基を有 するベンザインと置換フラン類との Diels-Alder 反応が位置選択的に進行すること を見出した。そこで、3,4-ピリダイン 2 につ いてもシリル基を用いた位置制御が可能と 考えた。2-シリル-3,4-ピリダイン 2f と置換フ ラン5の Diels-Alder 反応が位置選択的に進行 すれば、その後の開環反応と組み合わせるこ とにより多置換イソキノリン骨格を構築で きる。また、イソキノリン1位のシリル基 SiR<sub>3</sub> は官能基変換が可能と考えられるため、その 幅広い適用範囲は魅力的である (Scheme 3)。 しかし、これまでシリルピリダインに関する 報告例は全くない上、イソキノリン環1位シ リル基の変換反応は報告されていなかった。



そこで申請者は、多様なイソキノリン類を 合成することを目的として、2位にシリル基 を有する 3,4-ピリダインとフランとの Diels-Alder 反応における位置選択性を調査し、 得られた環化付加体のエーテル環を開環す るとともに、シリル基の変換を試みた。

3. 研究の方法

上記の目的を達成するために、申請者は以 下の様な手順で研究を推進した。

(1) フッ素アニオンを用いた温和な反応条件 下、2-シリル-3,4-ピリダイン 2f を発生させる ため、様々な脱離基を有する前駆体候補化合 物 3b-d を合成する (Figure 2)。



Figure 2

(2) 種々の非対称フラン 5 を用いて、2-シリ ル-3,4-ピリダイン 2f との反応性及び位置選 択性を調査する (Scheme 4)。



Scheme 4

(3) 環化体 (6 or 7) における 1,4-エポキシ環の開環と、シリル基の変換反応を検討し、本 法により多様なイソキノリン類 8 が合成でき ることを示す (Scheme 5)。



### Scheme 5

4. 研究成果

 (1) Figure 2 に示す前駆体候補化合物 3b は合成困難であったため、Scheme 6 に示すように 3-ブロモピリジン 3e を原料として 2 段階で 3c (M = SiR<sub>3</sub>), 3g (M = SnR<sub>3</sub>) を合成した。



## Scheme 6

(2) 上記の反応で合成した 3c 及び 3g を前駆 体として、2-ブチルフラン 5b 存在下、フッ

**Table 1.** Diels-Alder reactions of 2-subsituted-3,4-pyridynes 2 with 2-butylfuran 5b.<sup>a</sup>

| SiMe <sub>3</sub><br>N Br<br> | 0 n-Bu<br>5b<br>CsF<br>MeCN<br>60 °C, 3 h |                                  | <i>n</i> -Bu<br>5b<br>+<br>0<br>-Bu<br>5b |                                  | <i>n</i> -Bu<br><i>i</i> 0<br><i>i</i> 0<br><i></i> |
|-------------------------------|-------------------------------------------|----------------------------------|-------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| entry M                       |                                           | $3 \qquad yie \\ \mathbf{a}^{b}$ | eld of                                    | <b>6</b> : <b>7</b> <sup>c</sup> | yield of $6+7^d$ (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| entry              | IVI                                 | 3               | <b>9</b> <sup>b</sup> (%) | ) 0.7    | $6+7^{d}(\%)$ |  |
|--------------------|-------------------------------------|-----------------|---------------------------|----------|---------------|--|
| 1                  | Н                                   | 3f              | -                         | 1.0:1    | 10            |  |
| $2^{e}$            | SiMe <sub>3</sub>                   | 3Ac             | -                         | 1.7:1    | 43            |  |
| 3                  | SiEt <sub>3</sub>                   | 3Bc             | 25                        | 2.3:1    | 63            |  |
| $4^{f}$            | SiEt <sub>3</sub>                   | 3Bc'            | 14                        | 2.3:1    | 78            |  |
| 5                  | Si(t-Bu)Me <sub>2</sub>             | 3Cc             | 15                        | 2.3:1    | 41            |  |
| 6                  | Si(allyl)Me <sub>2</sub>            | 3Dc             | 19                        | 2.1:1    | 52            |  |
| 7                  | SiBnMe <sub>2</sub>                 | 3Ec             | 20                        | 2.0:1    | 40            |  |
| 8                  | SiPh <sub>2</sub> Me                | 3Fc             | 35                        | 2.3:1    | 46            |  |
| $9^g$              | SiPh <sub>3</sub>                   | 3Gc             | 84                        | 2.7:1    | 13            |  |
| 10                 | SiMe <sub>2</sub> SiMe <sub>3</sub> | 3Hc             | 8                         | 2.6:1    | 38            |  |
| 11                 | $SnBu_3$                            | 3Ag             | 44                        | 2.8:1    | 42            |  |
| 12                 | SnCy <sub>3</sub>                   | 3Bg             | 47                        | 2.5:1    | 52            |  |
| <sup>a</sup> Condi | tions: 1.0 ea. of ?                 | <b>3</b> 7 0 ea | of <b>5h</b> 1            | 15 ea of |               |  |

Conditions: 1.0 eq of 3, 7.0 eq of 5b, 1.5 eq of CsF in MeCN (0.40 M) at 60 °C for 3 h. <sup>1</sup>Isolated yield of by-product 9 (%). Determined by <sup>1</sup>H NMR. <sup>d</sup>Total isolated yield of 6 and 7 (%). <sup>c</sup>Conditions: 1.0 eq of 3, 7.0 eq of 5b, 1.0 eq of *t*-BuOK in HMPA (0.53 M) at 0 °C for 2 h.

<sup>f</sup>2,4-Bis(triethylsilyl)-3-bromopyridine **3Bc'** was used instead of **3Bc**. <sup>g</sup>The reaction was performed in MeCN/THF = 1 : 1.

素アニオンを作用させたところ (Table 1)、い ずれの場合も 3,4-pyridyne 2 が発生したこと 示す付加環化生成物6と7の混合物を与えた。 本反応の位置選択性に着目すると、置換基を 持たない場合には (entry 1)、全く選択性が発 現しないのに対して、ケイ素及びスズ置換基 M を有する場合において、置換基 M とブチ ル基が離れた distal 環化体 6 を位置選択的に 与えた (entries 2-12)。このとき、ケイ素上の 置換基の大きさによって、位置選択性はほと んど変わらないが、収率が大きく変化し、ト リエチルシリル基を置換基とした場合 (M = SiEt<sub>3</sub>) に最も良い収率で環化付加体 (6 and 7) を与えた (entries 3-4)。しかし、本反応で は副生成物としてプロトン化体9がほぼすべ ての反応で生成しており (entries 3-12)、これ が収率低下の大きな原因であると考えた。

すなわち、臭素の脱離性が低いためにアニ オン中間体 10 の寿命が比較的長く、3,4-ピリ ダイン 2 が発生する (Scheme 7, path a) 前に プロトン化が進行し (path b)、9 が生成してい るものと考えられる。



#### Scheme 7

上記の問題点を解決する方法として、以下 の二つが考えられる。①プロトン化の原因と なる水を完全に除去する。②臭素より脱離性 高いヨウ素へと変換する。しかし、反応系中 から水を完全に除去するのは極めて困難で あったので、②の手法で問題を解決した。す なわち、3eより3段階で合成した3dを用い てピリダインの発生を試みたところ、プロト ン化による副生成物11は全く生成せず、目的 とする環化付加体(6 and 7)を収率よく得る ことができた(Scheme 8)。



次に、前駆体 3d から発生させた 2f と種々 のフラン 5 との反応を試みた (Table 2)。その 結果、全ての 2 位置換フランとの反応は distal 選択的に進行し、6 を位置選択的に与えた (entries 1–11)。なお、この位置選択性は置換 基の嵩高さによって大きく影響を受けた (entries 1–3)。一方、フラン上に電子吸引性基 が置換しても反応は問題なく進行するが (entries 7 and 8)、2-ホルミルフラン 5j の場合 には反応が複雑化した (entry 9)。そこで、フ ラン上のホルミル基をアセタールによって 保護したところ、高位置選択的かつ高収率で 目的の環化体 (6 and 7)を与えた (entries 10 and 11)。しかし、3-ブロモフラン 5mの反応 では位置選択性がほとんど発現しなかった (entry 12)。

**Table 2.** Scope and limitation of regioselective Diels-Alder reactions of 2-silyl-3,4-pyridyne 2f, generated from 3d, with various furans 5.<sup>*a*</sup>

| $\begin{array}{c} \overbrace{N \leftarrow I}^{SiEt_3} \\ \overbrace{SiEt_3}^{SiEt_3} \\ \mathbf{3d} \end{array} \xrightarrow{\begin{array}{c} CsF, & 5 \\ MeCN, & 60 \\ \circ C \end{array}} \xrightarrow{\left( \begin{array}{c} R^1 \\ N \leftarrow I \\ SiEt_3 \end{array} \right)} \xrightarrow{\left( \begin{array}{c} R^1 \\ N \leftarrow I \\ SiEt_3 \end{array} \right)} \xrightarrow{\left( \begin{array}{c} R^1 \\ N \leftarrow I \\ SiEt_3 \end{array} \right)} \xrightarrow{\left( \begin{array}{c} R^1 \\ N \leftarrow I \\ SiEt_3 \end{array} \right)} \xrightarrow{\left( \begin{array}{c} R^1 \\ N \leftarrow I \\ SiEt_3 \end{array} \right)} \xrightarrow{\left( \begin{array}{c} R^1 \\ N \leftarrow I \\ SiEt_3 \end{array} \right)} \xrightarrow{\left( \begin{array}{c} R^1 \\ N \leftarrow I \\ SiEt_3 \end{array} \right)} \xrightarrow{\left( \begin{array}{c} R^1 \\ N \leftarrow I \\ SiEt_3 \end{array} \right)} \xrightarrow{\left( \begin{array}{c} R^1 \\ N \leftarrow I \\ SiEt_3 \end{array} \right)} \xrightarrow{\left( \begin{array}{c} R^1 \\ N \leftarrow I \\ N \leftarrow I \\ I \\ I \end{array} \right)} \xrightarrow{\left( \begin{array}{c} R^1 \\ R^2 \end{array} \right)} \xrightarrow{\left( \begin{array}{c} R^1 \\ N \leftarrow I \\ I \\ I \end{array} \right)} \xrightarrow{\left( \begin{array}{c} R^1 \\ I \\ I \end{array} \right)} \xrightarrow{\left( \begin{array}{c} R^1 \\ I \\ I \end{array} \right)} \xrightarrow{\left( \begin{array}{c} R^1 \\ R^1 \end{array} \right)} \xrightarrow{\left( \begin{array}{c} R^1 \\ I \end{array} \right)} \xrightarrow{\left( \begin{array}{c} R^1 \\ R^1 \end{array} \right)} \xrightarrow{\left( \begin{array}{c} R^1 \\ R^1 \end{array} \right)} \xrightarrow{\left( \begin{array}{c} R^1 \\ R^1 \end{array})} \xrightarrow{\left( \begin{array}{c} R^1 \\ R^1 \end{array} \right)} \xrightarrow{\left( \begin{array}{c} R^1 \\ R^1 \end{array} \right)} \xrightarrow{\left( \begin{array}{c} R^1 \\ R^1 \end{array})} \xrightarrow{\left( \begin{array}{c} R^1 \\ R^1 \end{array} \right)} \xrightarrow{\left( \begin{array}{c} R^1 \end{array} \right)} \xrightarrow{\left( \begin{array}{c} R^1 \\ R^1 \end{array} \right)} \xrightarrow{\left( \begin{array}{c} R^1 \end{array} \right)} \xrightarrow{\left( \begin{array}{c} R^1 \\ R^1 \end{array} \right)} $ |                      |                |    |                                  |                |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------|----|----------------------------------|----------------|--|--|
| entry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $R^1$                | $\mathbb{R}^2$ | 5  | <b>6</b> : <b>7</b> <sup>b</sup> | yield          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                |    |                                  | $(\%)^{c}$     |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Me                   | Н              | 5c | 2.1:1                            | 86             |  |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <i>n</i> -Bu         | Н              | 5b | 2.3:1                            | 93             |  |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t-Bu                 | Н              | 5d | >50 :1                           | 79             |  |  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Me                   | Me             | 5e | 4.2:1                            | 82             |  |  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SiMe <sub>3</sub>    | Н              | 5f | >50 :1                           | 91             |  |  |
| $6^d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $SnBu_3$             | Н              | 5g | 15 :1                            | 96             |  |  |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CO <sub>2</sub> Me   | Н              | 5h | 1.4:1                            | 91             |  |  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | COMe                 | Н              | 5i | 1.7:1                            | 63             |  |  |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | СНО                  | Н              | 5j | -                                | _ <sup>e</sup> |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                |    |                                  |                |  |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <sup>کر</sup> Me     | Н              | 5k | 9.0 : 1                          | 96             |  |  |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CH(OEt) <sub>2</sub> | Н              | 51 | 4.7:1                            | 95             |  |  |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Н                    | Br             | 5m | 1.1:1                            | 99             |  |  |

<sup>*a*</sup>Conditions: 1.0 eq of **3d**, 7.0 eq of **5**, 1.5 eq of CsF in MeCN (0.40 M) at 60 °C for 9–14 h. <sup>*b*</sup>Determined by <sup>1</sup>H NMR. <sup>c</sup>Total isolated yield of **6** and **7**. <sup>*d*</sup>3.0 eq of CsF was used. <sup>*e*</sup>Complex mixture.

更に、多様な置換基を有するピリダイン 2 を 3 より発生させ、2-ブチルフラン 5b との反応を行った (Table 3)。まず、無置換の 3,4-ピリダイン 2a と 5b の反応では全く選択性が発現しないのに対して (entry 1)、2-シリル-3,4-ピリダインの 6 位にメトキシ基 (entry 2) や *t*-ブチル基 (entry 3) が置換した場合でもほぼ同等の選択性が発現した。一方、シリル基 の代わりに極めて嵩高い *t*-Bu が置換しても、 ほとんど選択性は発現しないことから (entry 4)、本反応は単なる立体障害によって制御されているわけではないことが容易に理解で きる。一方、2-メトキシ-3,4-ピリダインでは、 選択性が逆転した (entry 5)。 **Table 3.** Substituent effect of 2-position of 3,4-pyridyne **2**, generated from **3**, with 2-butylfuran **5b**.<sup>*a*</sup>

| $\begin{array}{c} R \\ N \\ N \\ M \\ I \\ M \\ S \\ I \\ $ |                   |      |     |                    |                |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------|-----|--------------------|----------------|--|--|
| entry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | М                 | R    | 2   | 6 : 7 <sup>b</sup> | yield $(\%)^c$ |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Н                 | Н    | 2a  | 1.0 : 1            | 48             |  |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SiEt <sub>3</sub> | OMe  | 2f' | 2.5 : 1            | 86             |  |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SiEt <sub>3</sub> | t-Bu | 2f" | 1.7 : 1            | 95             |  |  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | t-Bu              | Н    | 2g  | 1.1 : 1            | 92             |  |  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | OMe               | Н    | 2c  | 1.0 : 1.5          | 61             |  |  |

<sup>*a*</sup>Conditions: 1.0 eq of **3**, 7.0 eq of **5b**, 1.5 eq of CsF in MeCN (0.4 M) at 60 °C for 8–16 h. <sup>*b*</sup>Determined by <sup>1</sup>H NMR. <sup>*c*</sup>Total isolated yield of **6** and **7**.

本反応において位置選択性が発現する理 由を解明するため、ピリダイン2の構造最適 化を DFT 計算により行い、NBO 法によって ピリダイン環平面内の反応に関わるπ軌道の 電子密度を求めた (Table 4)。その結果、無置 換のピリダイン2aと2-tert-ブチル-3.4-ピリダ イン 2g では、電子の偏りが殆どなかったの に対して (entries 1 and 3)、2-シリル-3,4-ピリ ダイン2fでは、4位の炭素上に電子が隔たっ ていた (entry 2)。一方、2-メトキシ-3,4-ピリ ダイン 2c では、その偏りが逆転し、3 位の電 子密度が高くなった (entry 4)。これら電子の 隔たりを用いて、今回の位置選択性を説明す ることができる。すなわち、2fにおける電子 密度の高い4位では、主にフランの電子密度 が低いπ軌道電子と相互作用して反応し、主 生成物は distal 環化体 **6b** となる (Figure 3)。 一方、2cの電子密度は3位で高くなっている から、2fとは逆の選択性が観測されたものと 考えられる。なお、Houk、Garg らによって提 唱されたピリダインのひずみ ( $\theta_1, \theta_2$ ) を用い た解明も可能であるが、π軌道の電子密度を 取り扱う方が実際の実験値を反映していた。

**Table 4.** Electron density and internal angle of2-substituted pyridyne 2.

| B | $\mathbf{N} = \begin{bmatrix} 0 & 2 \\ 0 \\ 0 \\ \mathbf{M} \\ 2 \end{bmatrix}$ |
|---|---------------------------------------------------------------------------------|
|   |                                                                                 |

|       | M 2               | Electron density <sup>a</sup> |      |       | Internal angle <sup>b</sup> |            |        |
|-------|-------------------|-------------------------------|------|-------|-----------------------------|------------|--------|
| entry |                   | C3                            | C4   | C3–C4 | $	heta_1$                   | $\theta_2$ |        |
| 1     | Н                 | 2a                            | 0.96 | 0.97  | -0.01                       | 124.5°     | 125.5° |
| 2     | SiEt <sub>3</sub> | 2f                            | 0.90 | 1.03  | -0.13                       | 129.7°     | 122.2° |
| 3     | <i>t</i> -Bu      | 2g                            | 1.00 | 0.99  | 0.01                        | 127.0°     | 124.1° |
| 4     | OMe               | 2c                            | 1.00 | 0.91  | 0.09                        | 121.4°     | 128.3° |

<sup>*a*</sup>Natural bond orbital (NBO) analysis of optimized structures of **2** using B3LYP/6-31G(d). <sup>*b*</sup>Distortion analysis of optimized structures of **2** using B3LYP/6-31G(d).



#### Figure 3

(3) 最後に、先の反応で得られた環化付加体 6b のイソキノリンへの変換を試みた (Scheme 9)。まず、1,4-エポキシ環を開環する べく、種々の酸を検討したところ、TMSOTf を用いることで効率的に開環し、イソキノリ ン(8b and 8c) へと導くことができた。また、 Fe<sub>2</sub>(CO)<sub>9</sub>を用いた脱酸素芳香化によってもイ ソキノリン 8d が収率よく得られた。得られ たイソキノリン 8d における1位ケイ素の官 能基変換を検討したところ、ヨウ素、酸素官 能基、窒素官能基、芳香環、アルキル基、水 素へと容易に変換することができた。



**Scheme 9.** Transformations of **6b** to multi substitututed isoquinolines **8b–j**.<sup>*a*</sup>

<sup>a</sup>Conditions (not optimized): a) TMSOTf in CH<sub>2</sub>Cl<sub>2</sub>; water. b) TMSOTf in CH<sub>2</sub>Cl<sub>2</sub>. c) Fe<sub>2</sub>(CO)<sub>9</sub> in toluene. d) Fe<sub>2</sub>(CO)<sub>9</sub> in toluene; I<sub>2</sub> in HMPA at 70 °C. e) Fe<sub>2</sub>(CO)<sub>9</sub> in toluene; I<sub>2</sub> in DMF at 100 °C. f) Fe<sub>2</sub>(CO)<sub>9</sub> in toluene; I<sub>2</sub> in HMPA at 100 °C. g) Fe<sub>2</sub>(CO)<sub>9</sub> in toluene; I<sub>2</sub> in HMPA at 100 °C. g) Fe<sub>2</sub>(CO)<sub>9</sub> in toluene; Pd(PPh<sub>3</sub>)<sub>4</sub>, *p*-NO<sub>2</sub>C<sub>6</sub>H<sub>4</sub>I, TBAF in DMF. h) Fe<sub>2</sub>(CO)<sub>9</sub> in toluene; *t*-BuCHO in HMPA at 90 °C; TBAF. i) Fe<sub>2</sub>(CO)<sub>9</sub> in toluene; TBAF.

以上のように申請者は、シリル基を配向基 として用いることにより、3,4-ピリダインの Diels-Alder 反応が位置選択的に進行すること を見出し、本法を多様なイソキノリン合成法 として開発する事に成功した。 5. 主な発表論文等

〔雑誌論文〕(計8件)

(1) Takagi, Akira; <u>Ikawa, Takashi</u>; Kurita, Yurio; Saito, Kozumo; Azechi, Kenji; Egi, Masahiro; Itoh, Yuji; Tokiwa, Hiroaki; Kita, Yasuyuki; Akai, Shuji

Generation of 3-Borylbenzynes, Their Regioselective Diels-Alder Reactions, and Theoretical Analysis *Tetrahedron* **2013**, *69*, 4338–4352. DOI: 10.1016/j.tet.2013.03.016

(2) <u>Ikawa, Takashi</u>; Takagi, Akira; Goto, Masahiko; Aoyama, Yuya; Ishikawa, Yoshinobu; Itoh, Yuji; Fujii, Satoshi; Tokiwa, Hiroaki; Akai, Shuji

Regiocomplementary Cycloaddition Reactions of Boryl- and Silylbenzynes with 1,3-Dipoles: Selective Synthesis of Benzo-Fused Azole Derivatives

*J. Org. Chem.* **2013**, *78*, 2965–2983. DOI: 10.1021/jo302802b

(3) Komaki, Ryoichi; <u>Ikawa, Takashi</u>; Saito, Kozumo; Hattori, Kazuyo; Ishikawa, Natsuyo; Fukawa, Hidemichi; Egi, Masahiro; Akai, Shuji Discovery of Aromatic Components with Excellent Fragrance Properties and Biological Activities:  $\beta$ -Ionols with Antimelanogenetic Effects and Their Asymmetric Syntheses *Chem. Pharm. Bull.* **2013**, *61*, 310–314. DOI: 10.1248/cpb.c12-00916

(4) <u>Ikawa, Takashi</u>; Saito, Kozumo; Akai, Shuji Palladium-Catalyzed One-Pot Cross-Coupling of Phenols Using Nonafluorobutanesulfonyl Fluoride *Synlett* **2012**, *23*, 2241–2246. DOI: 10.1055/s-0032-1317076

(5) <u>Ikawa, Takashi</u>; Fujita, Yuki; Mizusaki, Tomoteru; Betsuin, Sae; Takamatsu, Haruki; Maegawa, Tomohiro; Monguchi, Yasunari; Sajiki, Hironao
Selective *N*-Alkylation of Amines Using Nitriles under Hydrogenation Conditions: Facile
Synthesis of Secondary and Tertiary Amines *Org. Biomol. Chem.* 2012, *10*, 293–304.
DOI: 10.1039/C10B06303K

(6) <u>Ikawa, Takashi;</u> Nishiyama, Tsuyoshi; Shigeta, Takashi; Mohri, Shinya; Morita, Shinsuke; Takayanagi, Sho-ichi; Terauchi, Yuki; Morikawa, Yuki; Takagi, Akira; Ishikawa, Yoshinobu; Fujii, Satoshi; Kita, Yasuyuki; Akai, Shuji *ortho*-Selective Nucleophilic Addition of Primary Amines to Silylbenzynes: Synthesis of 2-Silylanilines *Angew. Chem. Int. Ed.* **2011**, *50*, 5674–5677. DOI: 10.1002/anie.201100360

(7) <u>Ikawa, Takashi</u>; Nishiyama, Tsuyoshi; Nosaki, Toshifumi; Takagi, Akira, Akai, Shuji
A Domino Process for Benzyne Preparation: Dual Activation of *o*-(Trimethylsilyl)phenols by Nonafluorobutanesulfonyl Fluoride *Org. Lett.* **2011**, *13*, 1730–1733.
DOI: 10.1021/ol200252c

(8) <u>Ikawa, Takashi</u>; Takagi, Akira; Kurita, Yurio; Saito, Kozumo; Azechi, Kenji; Egi, Masahiro; Kakiguchi, Keisuke; Kita, Yasuyuki; Akai, Shuji Preparation of Borylbenzynes and Their Regioselective Diels–Alder Reaction: Synthesis of Functionalized Arylboronates *Angew. Chem. Int. Ed.* **2010**, *49*, 5563–5566. DOI: 10.1002/anie.201002191

〔学会発表〕(計 29 件)

 <u>Ikawa, Takashi</u>; Takagi, Akira; Akai, Shuji Experimental and Theoretical Study on Regioselective Reactions of 3-Silyl- and 3-Borylbenzyne

The 6th Heron Island Conference on Reactive Intermediates and Unusual Molecules: Synthesis and Mechanism (Heron 6), Australia, Jul. 7–13, 2013. 発表予定

(2) <u>Ikawa, Takashi</u>; Urata, Hirohito; Nishiyama, Tsuyoshi; Akai, Shuji
Regioselective Diels–Alder Reactions of
2-Silyl-3,4-pyridynes with Furans: Selective
Synthesis of Isoquinolines
23nd French-Japanese Symposium of Medicinal
and Fine Chemistry, Nagasaki, Japan, May 12–15,
2013.

(3) 浦田博一,西山剛史,<u>井川貴詞</u>,赤井周 司

シリル置換ピリダインの位置選択的 Diels-Alder 反応:多置換イソキノリンの構築 第 38 回反応と合成の進歩シンポジウム(東 京),講演要旨集 pp.324–325, 2012 年 11 月 6 日

(4) <u>Ikawa, Takashi</u>; Saito, Kozumo; Nishiyama, Tsuyoshi; Nosaki, Toshifumi; Takagi, Akira; Akai, Shuji

NfF-Mediated in-situ Activation of Phenols for Benzyne Generation and Coupling Reactions The 6th Takeda Science Foundation Symposium on PharmaSciences, Osaka, Japan, Sept. 13–14, 2012. (5) Takagi, Akira; <u>Ikawa, Takashi</u>; Takayanagi, Sho-ichi; Goto, Masahiko; Aoyama, Yuya; Itoh, Yuji; Tokiwa, Hiroaki; Akai, Shuji Regioselective Cycloaddition Reactions of Silyland Boryl-Benzynes: Regiocontrolled Synthesis of Multisubstituted Aromatic Compounds The 6th Takeda Science Foundation Symposium on PharmaSciences, Osaka, Japan, Sept. 13–14, 2012.

(6) 高木 晃, <u>井川貴詞</u>,後藤雅彦,青山祐也,赤井周司
置換ベンザインの(3+2)環化付加反応による
縮合芳香族複素環の位置選択的合成
第 29 回有機合成化学セミナー(静岡),講演
要旨集 p.121, 2012 年 9 月 6 日

(7) <u>井川貴詞</u>, 浦田博一, 西山剛史, 赤井周司

置換基効果を用いる 3,4-ピリダインの位置選 択的環化付加反応

日本薬学会第 132 年会(札幌), 講演要旨集(2) p.132, 2012 年 3 月 30 日

(8) Akai, Shuji; <u>Ikawa, Takashi</u>; Takagi, Akira; Takayanagi, Sho-ichi
Regiocontrol of Cycloaddition Reactions of Benzynes by Bory and Silyl Substituents
22nd French-Japanese Symposium of Medicinal and Fine Chemistry, Rouen, France, Sept. 12, 2011.

(9) <u>Ikawa, Takashi</u>; Nishiyama, Tsuyoshi; Akai, Shuji
Practical Benzyne Preparation from Phenol Derivatives Using NfF
The 2nd International Symposium for Process
Chemistry, Kyoto, Japan
Aug. 10–12, 2011.

(10) Takagi, Akira; <u>Ikawa, Takashi</u>; Takayanagi, Sho-ichi; Itoh, Yuji; Tokiwa, Hiroaki; Akai, Shuji Theoretical Study of Regioselectivities in the Diels-Alder Reactions between Substituted Benzynes and Furans Ninth Triennial Congress of the World Association of Theoretical and Computational Chemists (WATOC) 2011, Santiago de Compostela, Spain, Jul. 19, 2011.

6.研究組織
 (1)研究代表者
 井川貴詞 (IKAWA TAKASHI)
 静岡県立大学・薬学部・助教
 研究者番号: 20453061