科学研究費助成事業

平成 28 年 6 月 1

研究成果報告書

平成 2 8 年 6 月 1 日現在
機関番号: 1 6 1 0 1
研究種目: 基盤研究(B) (一般)
研究期間: 2012~2015
課題番号: 24360028
研究課題名(和文)量子ドットと半導体多層膜結合共振器構造を用いた超高速波長変換素子
研究課題名(英文)Ultrafast wavelength conversion device by semiconductor multilayer coupled cavity with quantum dots
研究代表者
井須 俊郎(Isu, Toshiro)
徳島大学・ソシオテクノサイエンス研究部・特任教授
研究者番号:00379546
交付決定額(研究期間全休)・(直接経費) 14 500 000円

研究成果の概要(和文):半導体多層膜三結合微小共振器構造と半導体量子ドットを用いて、高効率な四光波混合を利用した超高速面型波長変換素子を実現することを目指し、結合光共振器構造と量子ドットの作製を行い、その波長変換特性について評価した。薄い歪緩和層に埋め込んだErドープ量子ドットを使って、1ピコ秒程度の超高速な吸収変化の非線形光学応答を得ることができたが、波長変換信号は量子ドットによる吸収の影響を大きく受けることが分かった。吸収のないAIAsキャップ層を有するInAs量子ドットを含む三結合共振器構造においては、波長変換信号を明瞭に観測することができ、超高速波長変換素子として応用可能であることを明らかにした。

研究成果の概要(英文): In order to realize an ultrafast wavelength-conversion device, we investigated nonlinear responses of a semiconductor multi-layer triple-coupled cavity with quantum dots (QDs) and crystal growth of the structure. We obtained ultrafast nonlinear transmission change of a cavity with the Er-doped quantum dots embedded in a thin strain-relaxed layer. We also found that the wavelength conversion signal by the four-wave-mixing was absorbed in the QDs, although degenerate four-wave-mixing signals were clearly observed due to saturable absorption. In the case of a triple-coupled cavity with QDs which were transparent for the incident lights, wavelength conversion signals were clearly observed. We confirmed that the triple-coupled cavity structure with QDs was promising for application to ultrafast wavelength-conversion devices.

研究分野: 工学(応用光学・量子光工学)

キーワード: 量子ドット 微小共振器 超高速光スイッチ 非線形光学応答 キャリア緩和 MBE,エピタキシャル成 長 化合物半導体多層膜 波長変換

1.研究開始当初の背景

高度情報化社会の構築に向け光通信ネッ トワークシステムの大容量化と超高速化が 進められており、近い将来における基盤とな るデバイスとして、光を光で制御する"全光 スイッチ"の実用化が期待されている。全光 スイッチは、材料の非線形光学応答を利用し て動作するが、実用化のためには、非線形光 学応答の高速性と高効率性を両立させるこ とが極めて重要である。半導体はそのバンド ギャップエネルギー付近の光に対しては、大 きな非線形光学応答を示すが、光吸収により 自由キャリアが生成されるとその緩和時間 に動作速度が制限され、高速応答が困難にな る。生成キャリアの寿命を短くする手段とし て、低温成長材料を使うことや、サブバンド 間遷移を利用することなどが研究されてき ている。一方、光吸収のほとんど無い透明領 域の光に対しては、超高速な非線形応答が得 られるが、非線形係数が小さいという問題点 があり、非線形信号増大のために、フォトニ ック結晶構造や共振器構造によって光電場 の増大を利用する方法が用いられてきた。こ の方法で生じる光電場強度の増大は、そのス ペクトル幅が制限され、信号増大と応答速度 とは相反するが、共振器のQ値が1000程度 までであれば光信号処理に要求されるピコ 秒程度の応答速度は十分にあり、大きな非線 形信号の増大が得られる。

本研究の代表者は、GaAs の透明領域の超 高速非線形光学応答を利用した一次元フォ トニック結晶構造においてピコ秒程度の応 答速度で大きな超高速光カーゲート信号が 得られることを報告し[phys. stat. solidi (c) 3, 671 (2006)]、さらに、InGaAs 格子歪緩和層 内に埋め込んだ InAs 量子ドットを用いた半 導体多層膜の微小共振器構造 [Appl. Phys. Express, 1, 092302 (2008)] において、光カー信 号が 2 桁近くの増大が生じることを示した [Appl. Phys. Express, 2, 0802001 (2009)]。 この InGaAs 格子歪緩和層に埋め込んだ InAs 量 子ドットは、1.5µm 帯のバンドギャップを 持ち、その波長領域で大きな非線形屈折率変 化を示すとともに、光励起キャリアの格子歪 緩和層の非発光中心による超高速緩和特性 を持つものである[J. Cryst. Growth, 311, 1807(2009)]。この量子ドットの超高速光キャ リア緩和と共振器構造による光電場強度の 増大の両者の実現により、きわめて低パワー で動作できる超高速応答の面型全光スイッ チの実現可能性の検証が行われた。(基盤研 究(B) 2136035)

一方、研究代表者のグループは、二つの共振器層を持つ結合共振器構造における二つの共振器モードの差周波発生を利用したテラヘルツ波発生素子を提案し、その素子の実験的検証を進めているが、この結合共振器構造を発展させた三つの共振器モードを持つ三結合共振器構造を用いると、三つの波長の光電場強度を増強することができるので、四

光波混合による波長変換が効率よくできる と期待され、その可能性の探索を進めた。(挑 戦的萌芽研究22656018)、その結果、三結合 共振器構造により四光波混合が有効に生じ 大きな信号を得られることを明らかにした。

これらの研究成果を結び合わせ、量子ドットと三結合共振器構造を用いることにより、 効率の高い超高速波長変換素子が実現できると期待されるが、その実現のためには、 InAs量子ドットおよび三結合共振器構造の 作製技術の確立と、その光学応答特性を実験 的に測定評価し波長変換素子としての特性 を明らかにすることが必要であった。

2.研究の目的

本研究は、1.5µm 帯の光通信波長で動作 できる超高速動作可能なデバイスを、量産 化に有利な GaAs 基板上で実現し面型デバ イスとして並列処理や小型化・集積化に有 利であるという構造的特徴を生かした素子 を実現しようという意図がある。本研究で は、半導体多層膜三結合微小共振器構造と 半導体量子ドットを用いて、高効率な四光 波混合を利用した超高速面型波長変換素子 を実現することを目指して、超高速波長変 換に適した GaAs 基板上 InAs 量子ドット および半導体多層膜三結合共振器構造の作 製技術の確立とそれらの特性を明らかにす ることを目的とした。試作した量子ドット を含む三結合共振器構造の四光波混合過程 の非線形光学応答の測定を行い、超高速波 長変換素子としての実現可能性の検証を行 った。

3.研究の方法

(1)結合共振器の設計と結晶成長による作製 非線形媒質としての量子ドット層と共振器 層を構成する半導体多層膜の両者がともに 高品質に結晶成長ができる必要があり、構造 の設計と作製条件を総合的に捉えてその最 適化を図ることを目指した。このため、様々 な多層膜共振器構造に対して、反射率スペク トルや共振器モードをマトリックス法によ る内部光電場のシミュレーションから求め るとともに、実験的には、分子線エピタキシ 結晶成長法による試料構造の試作およびそ の反射率スペクトルの測定により、適切な構 造の検討を行った。

(2)量子ドットの特性改善

 歪緩和層に埋め込んだ InAs 量子ドットに ついては、非線形特性の向上と低速緩和成分 の低減、更なる超高速緩和が課題であり、そ のため、量子ドットサイズの均一化とともに、 ドーピング条件や結晶成長条件の見直し等 を行い、適正な条件を探求した。さらに、透 明領域での非線形光学応答に適した量子ド ットの作製法についても成長条件の探索を 行い、その特性を原子間力顕微鏡観測やフォ トルミネセンス測定などにより調べた。特に 一原子層程度の AlAs キャップ層を加えた場 合の InGaAs 層や Sb 照射の効果などについ て調べた。

(3)波長変換特性の測定評価

既存の 100fs パルスレーザを用いた二ビー ムの時間分解光学測定系において四光波混 合信号を空間的に分離検出する測定系の構 築を行った。グレーティングペアとスリット を用いた光学系により励起光源のスペクト ル制御を行い、さらに、波長変換特性の高精 度な評価のため、二つの共振器モード波長の 光を独立して生成・制御できるように光学系 の改善を行った。四光波混合信号の時間応答 特性と信号スペクトルを測定し、波長変換信 号の総合的な評価を行った。

4.研究成果

(1) 歪緩和バリア層に埋め込んだ量子ドット 層を含む結合共振器の四光波混合信号

歪緩和バリア層に埋め込んだ量子ドット 層を含む単一の共振器構造に対して、四光波 混合信号の観測を行い、量子ドットによる信 号の増大を確認した。さらに、共振器層の中 央に薄い格子歪緩和バリア層となるInGaAs 層を設け、その中央にErドープのInAs量子ド ットを挿入した共振器構造を作製し、その透 過率変化の時間分解測定結果(図1)から1ps 程度の超高速応答信号を確認した。

図1.薄い歪緩和層に埋め込んだ量子ドットを含む共振器構造の透過率変化の時間プロファイル

(2)GaAs 共振器層の三結合共振器構造の四光 波混合信号

三結合共振器構造の基本的な非線形光学 応答を調べるため、非線形媒質として GaAs 層を共振器層とする三結合共振器構造を作 製し、四光波混合信号を観測した。図2はそ の入射光と四光波混合信号のスペクトルを 示す。この実験において得られた波長変換さ れた四光波混合信号は縮退四光波混合信号 と比べて理論的に予想されるよりかなり弱 かった。その原因を探求し、第三の共振器モ ード波長が波長変換光と正確に等しくない ためであり、それは結晶成長時おける DBR の 膜厚のわずかな不均一性による共振器層の 実効光路長の不均等性から生じるものであ ることを明らかにした。大きな四光波混合信 号を得るためには共振器モードの波長間隔 が一致するだけではなく、三つの共振器層の

図 2 . (a) 入射光スペクトルと(b) 四光波混合信号 スペクトル

実効光路長が等しいことが重要であること を明らかにした。

(3) 歪緩和バリア層に埋め込んだ量子ドット を含む三結合共振器の四光波混合信号

薄い格子歪緩和 InGaAs バリア層に埋め込 んだ InAs 量子ドット層を一つの共振器層の 中央に挿入した構造の三結合共振器を作製 した。MBE 成長の際に、InAs 量子ドット層を 含む共振器層の AlAs 層部分の基板回転を止 めることによって意図的に膜厚分布を導入 し、共振器層の実効光路長の変化に対する共 振器特性の膜厚依存性を実験的に明らか にするとともに、共振器層の実効光路長が等 価な三結合共振器を作製した。図3に反射ス ペクトルと隣り合う共振器モードの波長差 のウエハ内分布を示す。

図3.(a)反射スペクトルのウエハ内分布と(b)隣 り合う共振器モードの波長差の場所依存性

この三結合共振構造の四光波混合信号の 強度は、わずか一層の InAs 量子ドット層で あるにも関わらず、厚さ約 110nm の GaAs 共 振器層の場合とほぼ同等の超高速応答を示 すことが観測され、量子ドット層は大きな非 線形効果を示すことが確認できた。図4に示 すように、二つの共振器モードの波長のみを 含む入射光による四光波混合信号のスペク トル測定では、縮退四光波混合の信号のみが 観測されており、GaAs 共振器層の場合に観 測された波長変換信号が観られなかった。

この原因を探求したところ、縮退四光波混 合信号は同じ波長の入射光があるため可飽 和吸収によって透過するが、波長変換光は量 子ドットによる吸収が大きく影響している ことが分かった。

図4.入射光スペクトルと四光波混合(FWM)信 号のスペクトル

(4)透明領域の量子ドットを含む三結合共 振器の四光波混合信号

波長変換光の吸収を避けるため、1.5µm帯 に吸収を持ち超高速キャリア緩和を示す InAs 量子ドットに替えて、1.5µm 帯が透明 領域となる GaAs 上の InAs 量子ドットを含 む三結合共振器構造を作製した。この量子ド ットは層数を増やしても良好な共振器構造 が作製可能であるので、非線形効果を高める ために9層の量子ドット層を2 共振器層に 挿入する構造とした。また、前述のように結 晶成長時にウエハ内に膜厚分布を付け、反射 率スペクトルの面内分布を測定した。図5に ウエハ内の様々な点での反射スペクトルを 示す。赤線で示したスペクトルは共振器モー ドの波長が等間隔となっており、この場所は 光学的に等価な三つの共振器層を持つ三結 合共振器構造ができていることが確認され た。

図5.共振器層に膜厚分布のあるウエハ内の様々 な点の反射スペクトル

測定光学系を、二つの波長制限系を用いて 二つの励起光を独立に波長制御できるよう に改良し、四光波混合信号の測定を行った。 図6に透過スペクトルと、異なる二波長の励 起光スペクトル、および四光波混合信号スペ クトルを示す。遅延時間-2ps で観測されてい る信号は、遅延時間に依存しない励起光の散 乱光であり、測定系の調整不足に基づくもの である。遅延時間0ps でのスペクトルに於い て、明瞭に波長変換信号が観測されているこ とがわかり、この構造で超高速波長変換素子 が実現可能であることが確認できた。

図6.三結合共振器構造の等価スペクトルと異なる二波長の励起による四光波混合信号の測定結果 (5)量子ドットの特性改善

歪緩和InGaAsに埋め込んだInAs量子ドッ トの超高速キャリア緩和と低速緩和成分の 低減をErドープと適切な結晶成長条件によ り実現した。非線形光学応答特性の向上にむ けて、AlAsキャップ層を導入したGaAs上 InAs量子ドットの特性を調べた。濡れ層から の発光が減少し、量子ドットからの発光特性 が大きく改善することが分かった。(図7) またInGaAsバリア層の効果、発光の温度依 存性などの種々の特性を明らかにした。さら に量子ドット結晶成長時におけるSb照射の 効果について調べ、ドット密度と発光スペク トルに与える影響を明らかにした。

図7.AlAs キャップ層を付けた InAs 量子ドット のフォトルミネッセンススペクトル

5.主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計 9件)

Masanori Ogarane, Yukinori Yasunaga, Yoshinori Nakagawa, <u>Ken Morita, Takahiro</u> <u>Kitada</u> and <u>Toshiro Isu</u>, "Four-wave mixing in GaAs/AIAs triple-coupled cavity with InAs quantum dots", Japanese Journal of Applied Physics, Vol. 54, 04DG05, (2015), DOI 10.7567/JJAP.54.04DG05, 査読有.

X. M. Lu, S. Matsubara, Y. Nakagawa, <u>T.</u> <u>Kitada</u>, and <u>T. Isu</u>, "Suppression of photoluminescence from wetting layer of InAs quantum dots grown on (113)B GaAs with AIAs cap", Journal of Crystal Growth, Vol.425, pp.106-109, (2015), DOI 10.1016/j.jcrysgro.2015.02.074, 査読有.

Takahiro Kitada, Yukinori Yasunaga, Yoshinori Nakagawa, <u>Ken Morita</u>, and <u>Toshiro Isu</u>, "Four-wave mixing in a GaAs/AIAs triple-coupled multilayer cavity for novel ultrafast wavelength conversion devices", Japanese Journal of Applied Physics, Vol. 53 No. 4S 04EG03, (2013), DOI 10.7567/JJAP.53.04EG03, 査読 有.

<u>Takahiro Kitada</u>, Yukinori Yasunaga, Yoshinori Nakagawa, <u>Ken Morita</u>, and <u>Toshiro Isu</u>, "Wavelength conversion via four-wave mixing in a triple-coupled multilayer cavity", Applied Physics Letters, Vol.103, 101109, (2013), DOI 10.1063/1.4820813, 査読有.

<u>Takahiro Kitada</u>, Hyuga Ueyama, <u>Ken</u> <u>Morita</u>, <u>Toshiro Isu</u>, "Ultrafast photocarrier relaxation processes in Er-doped InAs quantum dots embedded in strain-relaxed InGaAs barriers", Journal of Crystal Growth, 378, pp.485-488, (2013), DOI 10.1016/j.jcrysgro.2012.11.005, 査読 有.

<u>Ken Morita</u>, Hyuga Ueyama, Yukinori Yasunaga, Yoshinori Nakagawa, <u>Takahiro</u> <u>Kitada</u>, <u>Toshiro Isu</u>, "GaAs/AIAs multilayer cavity with Er-doped InAs quantum dots embedded in extremely thin strain-relaxed InGaAs barriers for ultrafast all-optical switches" Japanese Journal of Applied Physics, **52** (4) 04CG04 (2013), DOI 10.7567/JJAP.52.04CG04, 査読 有.

Yukinori Yasunaga, Hyuga Ueyama, <u>Ken</u> <u>Morita, Takahiro Kitada</u> and <u>Toshiro Isu</u>, "Strongly Enhanced Four-Wave Mixing Signal from GaAs/AIAs Cavity with InAs Quantum Dots Embedded in Strain-Relaxed Barriers", Japanese Journal of Applied Physics, Vol. 52, No. 4, 04CG09, (2013), DOI 10.7567/JJAP.52.04CG09, 查読有. [学会発表](計 35件)

<u>盧翔孟</u>, <u>熊谷直人</u>, <u>北田貴弘</u>, <u>井須俊郎</u>, "超高速波長変換素子に向けた InAs 量子ド ットを有する GaAS/AIAs 多層膜三結合共振 器", 21p-S621-2, (2016.3.19-22 第 63 回 応用物理学会春季学術講演会 東工大 大岡 山キャンパス(東京都目黒区)).

<u>X. M. Lu</u>, A. Kawaguchi, <u>N. Kumagai, T.</u> <u>Kitada</u>, and <u>T. Isu</u>, "Temperature Dependence Photoluminescence From InAs Quantum Dots With AIAs Cap Grown on (311)B and (100) GaAs Substrate", The 42th International Symposium on Compound Semiconductors (ISCS2015), Mo3GN1.5, (2015.6.28-7.2, University of California Santa Barbara, CA USA).

大柄根斉宣,安長千徳,中河義典<u>森田健</u>, <u>北田貴弘</u>,<u>井須俊郎</u>, "InAs 量子ドットを 有する GaAs/AIAs 多層膜三結合共振器の四 光波混合信号測定",18p-A27-3.2014 年第 75 回応用物理学会秋季学術講演会 (2014.9.17-20 北海道大学札幌キャンパ ス(北海道札幌市)).

<u>盧翔孟</u>,川口晃弘,中河義典,<u>熊谷直人</u>, <u>北田貴弘</u>,<u>井須俊郎</u>, "AIAs キャップ付 InAs 量子ドットのフォトルミネツセンスに対す る InGaAs 層の影響", 18p-A20-16, 2014 年 第 75 回応用物理学会秋季学術講演会 (2014.9.17-20 北海道大学札幌キャンパ ス(北海道札幌市)).

Masanori Ogarane, Yukinori Yasunaga, Yoshinori Nakagawa, <u>Ken Morita</u>, <u>Takahiro</u> <u>Kitada</u>, and <u>Toshiro Isu</u>, "GaAs/AIAs triple-coupled cavity with InAs quantum dots for novel ultrafast wavelength conversion devices", Fr1-15, 第 33 回電 子材料シンポジウム(EMS-33) (2014.7.9-11 ラフォーレ修善寺(静岡県伊豆市)).

X. M. Lu, S. Matsubara, Y. Nakagawa, <u>T.</u> <u>Kitada</u>, and <u>T. Isu</u>, "Reduced wetting layer and enhanced photoluminescence of InAs quantum dots with AIAs cap grown on (113)B GaAs by molecular beam epitaxy", Th2-14, 第 33 回電子材料シンポジウム(EMS-33) (2014.7.9-11 ラフォーレ修善寺(静岡県伊 豆市)).

<u>Xiangmeng Lu</u>, Shuzo Matsubara, <u>Takahiro</u> <u>Kitada</u>, and <u>Toshiro Isu</u>, "Enhanced photoluminescence form InAs quantum dots with a thin AIAs cap layer grown on (100) and (311)B GaAs substrate", The 41th International Symposium on Compound Semiconductors (ISCS2014), Tu-B3-4, (2014.5.11-15, Montpellier, France).

<u>盧 翔孟</u>松原修三,中河義典<u>北田貴弘</u>, <u>井須俊郎</u>, "分子線エピタキシーによる(001) と(113)B GAAs 基板上に成長した InAs 量子ド ットのフォトルミネッセンスに与える AIAs キャップの影響", 18a-E15-1, 第 61 回応用 物理学会春季学術講演会(2014.3.17-20 青 山学院大学相模原キャンパス(神奈川県相模 原市)).

大柄根斉宣,安長千徳,中河義典<u>森田健</u>, <u>北田貴弘</u>,<u>井須俊郎</u>,"超高速波長変換素子 に向けた InAs 量子ドットを有する GaAs/AIAs 多層膜三結合共振器の作製", 17a-E15-3,第61回応用物理学会春季学術講 演会(2014.3.17-20 青山学院大学相模原キ ャンパス(神奈川県相模原市)).

<u>井須俊郎</u>,<u>北田貴弘</u>,<u>森田健</u>,<u>盧翔孟</u>,中 河義典,"半導体多層膜結合共振器構造の非 線形光学応答とそのデバイス応用",第9回 量子ナノ材料セミナー (2013.11.5-6 阿南 工業高等専門学校(徳島県阿南市)).

<u>北田貴弘</u>,安長千徳,中河義典,<u>森田健</u>, <u>井須俊郎</u>,"GaAs/AIAs 三結合共振器への波長 帯域制限したパルス光照射による四光波混 合信号光のスペクトル形状",19a-D6-3,2013 年第74回応用物理学会秋季学術講演会 (2013.9.16-20同志社大学(京都府京田辺 市)).

<u>Takahiro Kitada</u>, <u>Ken Morita</u>, and <u>Toshiro Isu</u>, "Molecular Beam Epitaxy of InAs Quantum Dots Embedded in Strain-Relaxed Barriers for Ultrafast Nonlinear Optical Devices", Collaborative Conference on Crystal Growth (3CG), A7, (2012.12.11-14, Orland, Florida, USA). (Invited)

<u>Takahiro Kitada, Ken Morita</u>, and <u>Toshiro Isu</u>, "Novel semiconductor quantum dots for ultrafast nonlinear optical devices", International Conference on Emerging Advanced Nanomaterials (ICEAN2012), 4C-IL-6, (2012.10.22-25, Mercure Hotel, Brisbane, Australia). (Invited)

Yukinori Yasunaga, Hyuga Ueyama, <u>Ken</u> <u>Morita, Takahiro Kitada</u> and <u>Toshiro Isu</u>, "Four-wave mixing signal measurements of GaAs/AIAs multilayer cavity with InAs QDs embedded in strain-relaxed barriers", International Conference on Emerging Advanced Nanomaterials (ICEAN2012), PII-105,(2012.10.22-25, Mercure Hotel, Brisbane, Australia).

Hidetada Komatsu, Zhao Zhang, Yoshinori Nakagawa, <u>Ken Morita</u>, <u>Takahiro</u> <u>Kitada</u>, and <u>Toshiro Isu</u>, "A GaAs/Air multilayer cavity for a planar-type non-linear optical device", 2012 International Conference on Solid State Devices and Materials (SSDM 2012), PS-7-19, (2012.9.25-27, Kyoto International Conference Center, Kyoto, Japan).

安長千徳,上山日向,<u>森田健</u>,<u>北田貴弘</u>, <u>井須俊郎</u>, "波長変換機能を実現する GaAs/AIAs 多層膜三結合共振器の四光波混 合信号の時間分解測定",2012 年秋季第 73 回応用物理学会学術講演会,12a-F1-2, (2012.9.11-14,愛媛大学(愛媛県松山市)). <u>北田貴弘</u>,上山日向,<u>森田健</u>,<u>井須俊郎</u>, " 歪緩和バリア層に埋め込んだ Er 添加 InAs 量子ドットにおける超高速キャリア緩和の 励起波長依存性",2012 年秋季第 73 回応用 物理学会学術講演会,11p-F1-1, (2012.9.11-14,愛媛大学(愛媛県松山市)). Y. Yasunaga, H. Ueyama,<u>K. Morita</u>,<u>T.</u> <u>Kitada</u>, and <u>T. Isu</u>, "Strongly enhanced four-wave mixing signal from GaAs/AIAs cavity",第 31 回電子材料シンポジウム (EMS-31) Fr1-8, (2012.7.11-13, ラフォー レ修繕時(静岡県伊豆市))

〔その他〕

ホームページ等 http://www.frc.tokushima-u.ac.jp/frc-na no/

6.研究組織 (1)研究代表者 井須 俊郎(ISU TOSHIRO) 徳島大学・大学院ソシオテクノサイエンス研究部・特 任教授 研究者番号:00379546

(2)研究分担者
北田 貴弘(KITADA TAKAHIRO)
徳島大学・大学院ソシオテクノサイエンス研究部・特
任准教授
研究者番号:90283738

熊谷 直人(KUMAGAI NAOTO)
徳島大学・大学院ソシオテゥノサイエンス研究部・特
任講師
研究者番号:40732152

加孟(LU XIANGMENG)
徳島大学・大学院ソシオテクノサイエンス研究部・特
任助教
研究者番号:80708800

森田 健(MORITA KEN) 千葉大学・工学研究科・准教授 研究者番号:30448344

(3)連携研究者 なし